首页> 外文学位 >First-principles investigations of conductivity control in wide-band-gap semiconductors.
【24h】

First-principles investigations of conductivity control in wide-band-gap semiconductors.

机译:宽带隙半导体中电导率控制的第一性原理研究。

获取原文
获取原文并翻译 | 示例

摘要

The wide-band-gap semiconductors GaN, AlN, and ZnO have properties that make them attractive candidates for fabricating light-emitting diodes, laser diodes, transistors and solar cells. With band gaps in the visible and ultraviolet, these materials and their alloys can emit and absorb in important regions of the electromagnetic spectrum. Despite the promise of these wide-band-gap semiconductors, their electronic conductivity cannot be completely controlled. In this work, we investigate the lack of conductivity control in these materials using first-principles calculations.;We first focus on sources of unintentional n-type conductivity. The sources of such conductivity have long remained unknown, and high concentrations of donors make it more difficult to achieve full control of the conductivity of wide-band-gap semiconductors. We have found that silicon, a common impurity in ZnO, acts as a shallow donor and likely contributes to background n-type conductivity.;Another shortcoming of these materials is that they are difficult, and sometimes impossible, to dope p type. This is a major barrier, since optoelectronic devices require both p-type and n-type material. Group-V impurities, which substitute on the anion site, are commonly thought to be attractive p-type dopants, especially for ZnO. We find these acceptors lead to highly localized, atomic-like states, making them ineffective dopants. Nitrogen, often touted as a promising acceptor in ZnO, is instead found to be an exceedingly deep acceptor that cannot lead to p-type conductivity. Carbon, a common impurity in the nitride semiconductors, exhibits similar behavior. We calculate characteristic optical signals for these acceptors, allowing for experimental verification of our predictions.;Finally, we investigate how defect-trapped holes can limit the effectiveness of cation-site acceptors. We find that Mg, the only p-type dopant for GaN, features a localized hole despite being an effective acceptor. In AlN, Mg is also highly localized, hampering hole conductivity in this material. In ZnO, Group-I acceptors such as Li, also trap holes, making them inefficient dopants, and limiting the prospects for achieving p-type ZnO.;Overall, we find that our results can explain the difficulties in improving the doping efficiency of Mg-doped GaN, and why alternative dopants are not effective. Our results indicate that substitutional acceptors in ZnO are deep defects, and demonstrate why p-type doping of ZnO is currently impossible.
机译:宽带隙半导体GaN,AlN和ZnO具有使其成为制造发光二极管,激光二极管,晶体管和太阳能电池的有吸引力的候选材料的特性。在可见光和紫外线中存在带隙,这些材料及其合金可以在电磁光谱的重要区域内发射和吸收。尽管有这些宽带隙半导体的希望,但它们的电子传导性仍无法完全控制。在这项工作中,我们使用第一性原理研究了这些材料中缺乏电导率控制。我们首先关注无意的n型电导率的来源。长期以来,这种导电性的来源仍然未知,并且高浓度的施主使得更难于完全控制宽带隙半导体的导电性。我们已经发现,硅(ZnO中的常见杂质)起着浅施主的作用,并可能有助于本底n型导电性。这些材料的另一个缺点是难以掺杂p型,有时甚至是不可能。这是一个主要的障碍,因为光电器件需要p型和n型材料。通常认为,在阴离子位点上取代的V族杂质是有吸引力的p型掺杂剂,尤其是对于ZnO。我们发现这些受体导致高度局限的原子状态,使它们成为无效的掺杂剂。经常被吹捧为ZnO中有希望的受体的氮被发现是一种非常深的受体,不能导致p型电导率。碳是氮化物半导体中的常见杂质,表现出相似的行为。我们计算这些受体的特征光信号,以便对我们的预测进行实验验证。最后,我们研究了缺陷陷阱中的空穴如何限制阳离子位点受体的有效性。我们发现,Mg是GaN的唯一p型掺杂剂,尽管它是有效的受体,但具有局部空穴。在AlN中,Mg也高度局限,从而阻碍了该材料中的空穴传导性。在ZnO中,I类受主(例如Li)也会捕获空穴,使其成为低效率的掺杂剂,并限制了获得p型ZnO的前景。总的来说,我们发现我们的结果可以解释提高Mg掺杂效率的困难掺杂的GaN,以及为什么其他掺杂剂无效。我们的结果表明ZnO中的取代受体是深缺陷,并证明了为什么目前不可能进行ZnO的p型掺杂。

著录项

  • 作者

    Lyons, John Lambert.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Materials Science.;Physics General.;Engineering General.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号