首页> 外文学位 >Soil-structure interaction of FRP piles in integral abutment bridges.
【24h】

Soil-structure interaction of FRP piles in integral abutment bridges.

机译:整体式桥台中FRP桩的土-结构相互作用

获取原文
获取原文并翻译 | 示例

摘要

The rapid degradation of conventional material piling is one of the major problems in the bridge and civil infrastructure industry. Conventional construction materials have major disadvantages that increase their maintenance cost and reduce their service life especially in aggressive environments. The use of advanced composite materials such as Fiber Reinforced Polymers (FRPs) offers a better alternative to conventional building materials in terms of strength, weight, durability, and life cycle cost.; Integral abutment bridges are a special type of bridges that are built without bearings or expansion joints. These bridges are usually subjected to cycles of expansion and contraction that causes horizontal movements of the pile foundations. Accommodating such movements requires some flexibility in the piling system. Fiber reinforced composites (FRPs) have the strength and flexibility and can be custom designed as needed. An extensive literature and market survey indicated that composite materials are increasingly being considered for use in civil infrastructure applications ranging from the retrofit and rehabilitation of buildings and bridges to the construction of new structural systems. Very little research has been conducted on FRPs as piling materials. The current research investigates the use of fiber reinforced composites as piling materials for jointless bridges.; Three-dimensional finite element models were developed and analyzed using the multi purpose FEM package ANSYS. The models were built to take into consideration multiple design parameters including the non-linear behavior of soil and concrete and the orthotropic behavior of unidirectional composites. Investigation results showed that FRP composites are good candidates for use in piling systems. Because of their flexibility in both geometrical shaping and layer lay-up, FRPs provide more options to designers to come up with suitable systems based on their needs. A new pile section is introduced to be used with or without concrete filling. The section consists of two flanges and a double web to allow flexibility in controlling the size of concrete filling between the webs. Analysis results showed that flexibility of the geometry of the new pile section and the flexibility of tailoring multi-layered unidirectional FRP composites make the pile customizable for best performance. FRP composites lend themselves to be optimized to achieve desired properties. The study showed that favorable stiffness and stress results can be obtained for composite piles in integral abutment bridges by optimizing the section's geometry while keeping a fixed cross-sectional area.
机译:常规材料打桩的快速降解是桥梁和民用基础设施行业的主要问题之一。常规的建筑材料具有主要缺点,这增加了它们的维护成本并且降低了它们的使用寿命,特别是在恶劣的环境中。就强度,重量,耐用性和生命周期成本而言,使用诸如纤维增强聚合物(FRP)之类的先进复合材料可以更好地替代传统建筑材料。整体式桥台是一种特殊类型的桥,没有轴承或伸缩缝。这些桥通常经受膨胀和收缩的循环,这引起桩基础的水平运动。适应这种运动需要打桩系统具有一定的灵活性。纤维增强复合材料(FRP)具有强度和柔韧性,可以根据需要进行定制设计。大量的文献和市场调查表明,复合材料正越来越多地被考虑用于民用基础设施应用,从建筑物和桥梁的翻新和修复到新结构系统的建造。关于玻璃钢作为打桩材料的研究很少。当前的研究调查了纤维增强复合材料作为无接缝桥梁桩材料的用途。使用多用途FEM软件包ANSYS开发和分析了三维有限元模型。建立模型时要考虑到多个设计参数,包括土和混凝土的非线性特性以及单向复合材料的正交各向异性特性。调查结果表明,玻璃钢复合材料是用于桩系统的良好候选材料。由于FRP在几何形状和铺层方面都具有灵活性,因此它们为设计人员提供了更多选择,以便他们根据自己的需求提出合适的系统。引入了一个新的桩段,可以使用或不使用混凝土填充。该部分由两个法兰和一个双腹板组成,可灵活控制腹板之间的混凝土填充量。分析结果表明,新桩截面的几何形状的灵活性以及定制多层单向FRP复合材料的灵活性使桩可定制以实现最佳性能。 FRP复合材料可以优化自身以实现所需的性能。研究表明,在保持固定截面积不变的情况下,通过优化截面的几何形状,可以在整体式桥台桥梁中获得良好的刚度和应力结果。

著录项

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 363 p.
  • 总页数 363
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号