首页> 外文学位 >Silicon/silicon germanium heterostructures: Materials, physics, quantum functional devices and their integration with heterostructure bipolar transistors.
【24h】

Silicon/silicon germanium heterostructures: Materials, physics, quantum functional devices and their integration with heterostructure bipolar transistors.

机译:硅/硅锗异质结构:材料,物理学,量子功能器件及其与异质结构双极晶体管的集成。

获取原文
获取原文并翻译 | 示例

摘要

With the advent of the first transistor in 1947, the integrated circuit (IC) industry has rapidly expanded with the tremendous advances in the development of IC technology. The driving force in the evolution of IC technology is the reduction of transistor sizes. Without a doubt, transistor miniaturization will face fundamental physical limitations imposed by further dimensional scaling of silicon transistors in the near future.; According to the 2004 International Technology Roadmap for Semiconductors (ITRS), the width of a gate electrode for complementary metal-oxide-semiconductor (CMOS) is projected to be a mere 7 nm by the end of 2018. No further solutions have been found. Since the 2001 ITRS, tunneling devices have been evaluated as an emerging technology to augment silicon CMOS. Transistor circuitry incorporating tunneling devices realized using III-V semiconductors has exhibited superior performance over its transistor-only counterparts. However, due to fundamental differences in material properties, such technology is not readily compatible with the mainstream platforms (>95% market share of semiconductors) of CMOS and HBT technologies. Recently, we demonstrated the successful monolithic integration of Si-based resonant interband tunnel diodes (RITDs) with CMOS and SiGe HBT, which makes them more attractive than III-V based tunnel diodes for system level integration.; This dissertation is concerned with the development of quantum functional tunneling devices, RITDs, and high-speed transistors, HBTs, using Si/SiGe heterostructures as well as material growth and electrical properties of Si/SiGe heterostructures. Emphasis is placed on the development of Si/SiGe-based RITDs, HBTs, and their monolithic integration for 3-terminal negative differential resistance (NDR) devices. The operating principles of Si-based RITDs and the integration of RITD with HBT are also discussed.
机译:随着1947年第一个晶体管的问世,随着IC技术发展的巨大进步,集成电路(IC)行业迅速发展。 IC技术发展的驱动力是晶体管尺寸的减小。毫无疑问,在不久的将来,晶体管的小型化将面临硅晶体管进一步尺寸缩放所带来的基本物理限制。根据2004年国际半导体技术路线图(ITRS),到2018年底,互补金属氧化物半导体(CMOS)栅电极的宽度预计仅为7 nm。目前尚未找到进一步的解决方案。自2001年ITRS以来,隧道器件已被评估为增强硅CMOS的新兴技术。结合了使用III-V半导体实现的隧穿器件的晶体管电路,表现出优于仅晶体管的同类产品的卓越性能。但是,由于材料特性的根本差异,此类技术无法与CMOS和HBT技术的主流平台(半导体市场份额超过95%)兼容。最近,我们证明了基于硅的谐振带间隧道二极管(RITD)与CMOS和SiGe HBT的成功单片集成,这使得它们在系统级集成方面比基于III-V的隧道二极管更具吸引力。本论文涉及使用Si / SiGe异质结构的量子功能隧穿器件RITD和高速晶体管HBT的开发以及Si / SiGe异质结构的材料生长和电学性质。重点放在基于Si / SiGe的RITD,HBT及其对3端负差分电阻(NDR)器件的单片集成上。还讨论了基于硅的RITD的工作原理以及RITD与HBT的集成。

著录项

  • 作者

    Chung, Sung-Yong.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 236 p.
  • 总页数 236
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号