首页> 外文学位 >Finite element modeling of piezoelectric bimorphs with conductive polymer electrodes.
【24h】

Finite element modeling of piezoelectric bimorphs with conductive polymer electrodes.

机译:具有导电聚合物电极的压电双压电晶片的有限元建模。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of my research has been to find a good way to solve for the mechanical and electrical behavior of piezoelectric polymer bimorphs which are electroded with a low to medium conductivity material. Traditionally, metal with very high conductivity has been used as the electrode material. Any applied voltage to an electrode will be distributed nearly instantaneously and uniformly throughout the electrode. Because of this quality, the voltage was assumed to be known and uniform for any applied voltage signal, including high frequency signals. The disadvantage of metal is that it is stiffer than polymers, and thus impedes the bending of the bimorph to a greater extent than for comparable polymer electrodes. With the modern invention of conductive polymers with acceptably high conductivities, it is now possible to manufacture piezoelectric devices with finite conductivity electrodes. For all but the very lowest frequencies of applied voltage signals, the voltage distribution cannot be assumed to be uniform throughout the electrode, nor can it be assumed to be exactly in phase. With finite conductivity electrodes there will be a loss in voltage amplitude due to resistivity, and there will also be a phase lag. The piezoelectric problem involves solving a coupled set of differential equations which involve mechanical displacement and electric potential. The electrical behavior of the electrodes is also included in the formulation, so that the voltage distribution in the electrodes is solved for simultaneously with the mechanical displacement and electric potential in the piezoelectric sheets. In this dissertation the coupled set of differential equations was solved using the Finite Element Method with quadratic Lagrange finite elements. The piezoelectric polymer which was modeled was polyvinylidene fluoride (PVDF). The conductive polymer of interest was PEDOT-PSS, although the model is valid for any type of isotropic finite conductivity material. The results of the work show that for moderate conductivity, the mechanical response of the bimorph is very good. There will not be a large phase lag within the first frequency mode. The bimorph resonates at low frequencies, and so any large effect from finite conductivity would only occur at higher modes.
机译:我研究的目的是找到解决压电聚合物双压电晶片的机械和电气性能的好方法,该压电双压电晶片用低至中电导率材料进行电极化。传统上,具有很高电导率的金属已被用作电极材料。任何施加到电极的电压将几乎瞬时且均匀地分布在整个电极上。由于这种质量,假定电压对于任何施加的电压信号(包括高频信号)都是已知且均匀的。金属的缺点是它比聚合物坚硬,因此与可比的聚合物电极相比,更大程度地阻止了双压电晶片的弯曲。利用具有可接受的高电导率的导电聚合物的现代发明,现在可以制造具有有限电导率电极的压电装置。对于所施加的电压信号中除最低频率以外的所有频率,不能假设整个电极的电压分布是均匀的,也不能假设它是完全同相的。对于电导率有限的电极,由于电阻率会导致电压幅度损失,并且还将存在相位滞后。压电问题涉及求解一组耦合的微分方程,其中涉及机械位移和电势。电极的电性能也包括在配方中,因此可以解决电极中的电压分布,同时解决压电片中的机械位移和电势。本文采用带有二次拉格朗日有限元的有限元方法求解了一组微分方程的耦合问题。建模的压电聚合物是聚偏二氟乙烯(PVDF)。尽管该模型对任何类型的各向同性有限电导率材料均有效,但它所关注的导电聚合物为PEDOT-PSS。工作结果表明,对于中等电导率,双压电晶片的机械响应非常好。在第一频率模式内不会有较大的相位滞后。双压电晶片在低频下谐振,因此,有限电导率产生的任何大影响只会在较高模式下发生。

著录项

  • 作者

    Lediaev, Laura Marie.;

  • 作者单位

    Montana State University.;

  • 授予单位 Montana State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号