首页> 外文学位 >Peritumorally activatable nanoparticles for delivery of paclitaxel to multidrug resistant ovarian cancer cells.
【24h】

Peritumorally activatable nanoparticles for delivery of paclitaxel to multidrug resistant ovarian cancer cells.

机译:用于紫杉醇递送至多药耐药性卵巢癌细胞的可经皮激活的纳米颗粒。

获取原文
获取原文并翻译 | 示例

摘要

Current chemotherapeutics for the treatment of cancer can cause severe systemic toxicity and reduced effectiveness if the cancer has developed multidrug resistance (MDR). Nanoparticles (NPs) have the potential to overcome these challenges by releasing drug only at the tumor site to reduce systemic toxicity and internalizing in the cancerous cells and releasing the drug intracellularly, which may be able to overcome MDR. Thus, we propose a "peritumorally activatable/transformable NP" (PTNP) system that will transform in a tumor-specific manner to increase its distribution at the tumor site as well as uptake by the tumor tissues. The NP is composed of a biodegradable polymer core conjugated to two ligands with distinct functions: first, the NP surface is conjugated via a matrix metalloproteinase (MMP) sensitive peptide linker to a polyethylene glycol (PEG) shell that will protect the NP from the immune system until cleavage by overexpressed MMPs in the tumor microenvironment. Once the PEG shell is removed, the NP will expose its surface conjugated to a second TAT peptide, which will increase the cellular uptake of the NPs into the tumor cells and may be able to bypass MDR mechanisms and increase drug retention at the tumor site.;To test the feasibility of our hypothesis, we first examined the "activated" form of the NPs or PLGA conjugated TAT (PLGA-TAT) NPs to see whether they could be useful in overcoming MDR and increasing cellular retention at the tumor site. Strangely, drug encapsulated PLGA-TAT NPs did not increase cytotoxicity in MDR cells even though efficient cellular uptake was observed with PLGA-TAT NPs and no cellular uptake was observed with PLGA NPs. We attributed the lack of increased cytotoxicity to rapid extracellular drug release from the PLGA NPs. In an attempt to attenuate the extracellular drug release, we tried coating the NPs in polydopamine and calcium phosphate (CaP), but none of our attempts to slow down drug release were successful. On the other hand, polydopamine chemistry allowed simpler and more robust conjugation of TAT to PLGA NP surface than our initial synthesis scheme. We examined whether the TAT-conjugated NPs could help increase the drug retention at the tumor site. TAT-conjugated NPs showed increased retention over PLGA NPs, which may be useful in the dynamic peritoneal environment. From there, we investigated the MMP sensitivity of the fully formed PTNPs. PTNPs were shown to be selectively taken up by ovarian cancer cells in the presence of MMP-2 confirming their MMP sensitivity.;We believe that these NPs have the potential to make a large impact in treating ovarian cancer due to their site-specific sensitivity and increased cellular retention. However, for these NPs to be useful for drug delivery, it is critical to find a way to control drug release from the NPs.
机译:如果癌症已发展成多药耐药性(MDR),则当前用于癌症治疗的化学疗法可能会导致严重的全身毒性和有效性降低。纳米颗粒(NPs)有潜力克服这些挑战,方法是仅在肿瘤部位释放药物以降低全身毒性并在癌细胞中内化并在细胞内释放药物,这可能能够克服MDR。因此,我们提出了一种“可经周向激活/转化的NP”(PTNP)系统,该系统将以肿瘤特异性方式转化,以增加其在肿瘤部位的分布以及被肿瘤组织的吸收。 NP由可生物降解的聚合物核心与两个具有不同功能的配体偶联而成:首先,NP表面通过基质金属蛋白酶(MMP)敏感的肽接头与聚乙二醇(PEG)外壳偶联,从而保护NP免受免疫直到在肿瘤微环境中被过表达的MMP裂解。除去PEG壳后,NP将暴露与第二个TAT肽偶联的表面,这将增加NPs对肿瘤细胞的细胞吸收,并且可能能够绕开MDR机制并增加药物在肿瘤部位的保留。 ;为了检验我们的假设的可行性,我们首先检查了NP或PLGA共轭TAT(PLGA-TAT)NP的“活化”形式,以查看它们是否可用于克服MDR和增加肿瘤部位的细胞滞留。奇怪的是,即使PLGA-TAT NPs观察到有效的细胞摄取,PLGA NPs观察不到细胞摄取,药物包裹的PLGA-TAT NPs也不会增加MDR细胞的细胞毒性。我们将缺乏增加的细胞毒性归因于PLGA NPs的快速胞外药物释放。为了减弱细胞外药物的释放,我们尝试在聚多巴胺和磷酸钙(CaP)中包被NP,但减慢药物释放的任何尝试均未成功。另一方面,与我们最初的合成方案相比,聚多巴胺化学使TAT与PLGA NP表面的结合更简单,更牢固。我们检查了TAT偶联的NP是否可以帮助增加药物在肿瘤部位的保留。结合TAT的NPs表现出比PLGA NPs更高的保留率,这在动态腹膜环境中可能有用。从那里,我们研究了完全形成的PTNP的MMP敏感性。 PTNPs被发现在MMP-2存在下被卵巢癌细胞选择性摄取,从而证实了其对MMP的敏感性。我们认为,由于这些NPs的位点特异性敏感性,它们在治疗卵巢癌中具有巨大的潜力。增加细胞保留。然而,为了使这些NP可用于药物递送,关键是找到一种控制药物从NP释放的方法。

著录项

  • 作者

    Gullotti, Emily S.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Biomedical engineering.;Oncology.;Cellular biology.;Pharmaceutical sciences.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号