首页> 外文学位 >Physiological and Morphological Characterization of Genetically Defined Classes of Interneurons in Respiratory Rhythm and Pattern Generation in Neonatal Mice.
【24h】

Physiological and Morphological Characterization of Genetically Defined Classes of Interneurons in Respiratory Rhythm and Pattern Generation in Neonatal Mice.

机译:新生小鼠呼吸节律和模式生成中遗传定义的中间神经元类的生理形态特征。

获取原文
获取原文并翻译 | 示例

摘要

Breathing in mammals depends on an inspiratory-related rhythm that is generated by glutamatergic neurons in the preBotzinger complex (preBotC), a specialized site of the lower brainstem. Rhythm-generating preBotC neurons are derived from a single lineage that expresses the transcription factor (TF) Dbx1, but the cellular mechanisms of rhythmogenesis remain incompletely understood. To elucidate these mechanisms we comparatively analyzed Dbx1-expressing neurons (Dbx1 +) and Dbxl- neurons in the preBotC in knock-in transgenic mice. Whole-cell recordings in rhythmically active newborn mouse slice preparations showed that Dbx1 + neurons activate earlier in the respiratory cycle and discharge greater magnitude inspiratory bursts compared to Dbxl - neurons. Furthermore, Dbx1+ neurons required significantly less input current to discharge spikes (rheobase) in the context of network activity. The expression of intrinsic membrane properties indicative of A-current (IA) and hyperpolarization-activated current (Ih) was generally mutually exclusive in Dbx1 + neurons, which may indicate rhythmogenic function. In contrast, there was no such relationship in the expression of intrinsic currents I A and Ih in Dbxl- neurons. Confocal imaging and digital reconstruction of recorded neurons revealed dendritic spines on Dbxl- neurons, but Dbx1 + neurons were spineless. Dbx1 + neuron morphology was largely confined to the transverse plane whereas Dbxl- neurons projected dendrites to a greater extent in the parasagittal plane (rostrocaudally). A greater percentage of Dbx1 + neurons showed contralaterally projecting axons whereas Dbxl- neurons showed axons projecting in the rostral direction, which were severed by transverse cutting of the slice. Our data suggest that the rhythmogenic properties of Dbx1+ neurons include a higher level of intrinsic excitability that promotes burst generation in the context of network activity, which may be attributable to dendritic active properties that are recruited by excitatory synaptic transmission. Along with Dbxl, the TF Math1 has been shown to give rise to neurons that have important respiratory functions, including a potential role in coordinating the inspiratory and expiratory phases. To evaluate this role, we performed physiological and morphological characterizations of Math1+ neurons in transgenic mice and found that one out of six recorded Math1+ neurons showed expiratory activity. The expiratory Math1+ neuron appeared to be have a larger soma as well as a greater somatodendritic span in all axes (dorsal-ventral, medial-lateral and rostral-caudal) than the non-respiratory modulated Math1+ neurons. This suggests that respiratory modulated Math1+ neurons may be physiologically and morphologically specialized compared to non-rhythmic Mathl+ neurons. Their larger morphological span and rhythmic expiratory modulation could be indicative of a function in coordinating phasic activity between inspiratory and expiratory oscillators. Although our findings are still preliminary, the data thus far are consistent with a hypothesized respiratory network model wherein the Math1+ neurons function in coordinating the pattern of inspiration and expiration. Identifying and characterizing hindbrain interneurons according to developmental genetic origins as well as physiological properties provides complementary information to help elucidate the cellular mechanisms underlying the generation and coordination of the respiratory rhythm.
机译:哺乳动物的呼吸依赖于preBotzinger复合体(preBotC)(下脑干的特殊部位)中的谷氨酸能神经元产生的吸气相关节律。产生节律的preBotC神经元来自表达转录因子(TF)Dbx1的单一谱系,但节律发生的细胞机制仍未完全了解。为了阐明这些机制,我们比较分析了敲入转基因小鼠中preBotC中的Dbx1表达神经元(Dbx1 +)和Dbxl-神经元。有节奏活动的新生小鼠切片制剂中的全细胞记录显示,与Dbxl-神经元相比,Dbx1 +神经元在呼吸循环中更早激活并释放出更大的吸气爆发。此外,在网络活动的情况下,Dbx1 +神经元所需的输入电流大大减少,以释放尖峰(流变基)。在Dbx1 +神经元中,表示A电流(IA)和超极化激活电流(Ih)的内在膜特性的表达通常相互排斥,这可能表示节律功能。相反,在Dbxl-神经元中固有电流I A和Ih的表达中没有这种关系。共聚焦成像和记录的神经元的数字重建显示了Dbxl神经元上的树突棘,但Dbx1 +神经元无刺。 Dbx1 +神经元的形态主要局限在横切面上,而Dbxl-神经元则将树突投射到矢状旁平面(尾状尾)更大程度。较大百分比的Dbx1 +神经元显示出对侧突出的轴突,而Dbxl-神经元显示出在鼻尖方向突出的轴突,这些轴突被切片的横向切割切断了。我们的数据表明,Dbx1 +神经元的节律特性包括较高水平的内在兴奋性,可在网络活动的情况下促进爆发生成,这可能归因于通过兴奋性突触传递募集的树突状活动特性。 TF Math1与Dbxl一起产生具有重要呼吸功能的神经元,包括在协调吸气和呼气阶段方面的潜在作用。为了评估该作用,我们在转基因小鼠中对Math1 +神经元进行了生理和形态学表征,发现记录的6个Math1 +神经元中有1个表现出呼气活性。与非呼吸调节型Math1 +神经元相比,呼气的Math1 +神经元似乎在所有轴(背腹,内侧-外侧和延髓-尾状)上具有更大的躯体和更大的树突跨度。这表明与非节律性Mathl +神经元相比,呼吸调节性Math1 +神经元可能在生理和形态上都具有特殊性。它们更大的形态学跨度和有节奏的呼气调节可能表明在吸气和呼气振荡器之间协调相位活动。尽管我们的发现仍是初步的,但迄今为止的数据与假设的呼吸网络模型一致,其中Math1 +神经元在协调吸气和呼气的模式中起作用。根据发育遗传起源和生理特性鉴定和表征后脑中间神经元可提供补充信息,以帮助阐明呼吸节律的产生和协调的细胞机制。

著录项

  • 作者单位

    The College of William and Mary.;

  • 授予单位 The College of William and Mary.;
  • 学科 Neurosciences.;Genetics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 80 p.
  • 总页数 80
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号