首页> 外文学位 >Quantitative spin-lock magnetic resonance imaging: Technical development and biomedical applications.
【24h】

Quantitative spin-lock magnetic resonance imaging: Technical development and biomedical applications.

机译:自旋锁相磁共振定量成像:技术发展和生物医学应用。

获取原文
获取原文并翻译 | 示例

摘要

Spin-lock magnetic resonance imaging (MRI) utilizes low amplitude spin-lock radiofrequency (rf) pulses to generate novel image contrast. The T1ϱ parameter, describing the relaxation of magnetization under the influence of spin-locking, can be measured noninvasively using spin-lock MRI to yield quantitative information about low frequency physico-chemical interactions between bulk water and surrounding molecules in biological tissues. This molecular-level information provides a unique insight into biological systems that is otherwise unattainable using conventional MR methods. However, the current state of spin-lock MRI has limitations in terms of the acquisition of volumetric data, rf power deposition, and length of experimental time.; The primary objective of this thesis is the technical development of quantitative spin-lock MRI and its applications to study biological tissue. Strategies are created to overcome the current experimental hindrances to facilitate clinical implementation. Novel techniques are developed to increase the time-efficiency and reduce the deposition of rf power during a spin-lock image acquisition. A pulse sequence is designed to produce multi-slice spin-lock images for complete coverage of an entire volume along with an algorithm to correct the multi-slice data for rf saturation effects to accurately measure T1ϱ. While the technical developments are generally applicable, their utility is demonstrated in cartilage and brain tissue of animals and humans.; Although spin-lock MRI can be used to investigate different tissue types and pathologies, this thesis focuses on the application of spin-lock methodologies to probe the biochemical and biomechanical properties of articular cartilage. The sensitivity of T1ϱ to changes in macromolecular content makes T1ϱ a promising MR marker of molecular changes in cartilage, degeneration of which plays a crucial role in osteoarthritis. To understand the relationship between T1ϱ and the progression of osteoarthritis, spin-lock MRI methods are applied to models of cartilage degeneration: enzymatically-treated bovine explants, a cytokine-induced in vivo porcine model, and naturally degraded osteoarthritic human cartilage specimens. The T1ϱ-based measurements of cartilage degeneration are corroborated by noninvasive quantification of proteoglycan using a novel sodium MRI strategy. T1ϱ MRI is taken one step further to track progressive changes in both cartilage biochemical content and biomechanical properties in an in vitro cytokine model of osteoarthritis.
机译:自旋锁相磁共振成像(MRI)利用低振幅自旋锁相射频(rf)脉冲产生​​新颖的图像对比度。 T1ϱ可以使用自旋锁MRI非侵入性地测量描述自旋锁影响下磁化弛豫的参数,以得出有关大量水与生物组织中周围分子之间的低频物理化学相互作用的定量信息。这种分子水平的信息提供了对生物学系统的独特见解,而使用常规的MR方法是无法获得的。但是,自旋锁定MRI的当前状态在获取体积数据,射频功率沉积和实验时间长度方面存在局限性。本论文的主要目的是定量自旋锁核磁共振成像技术的发展及其在生物组织研究中的应用。制定了克服当前实验障碍的策略,以促进临床实施。开发了新技术以提高自旋锁图像采集期间的时间效率并减少rf功率的沉积。设计脉冲序列以产生用于完全覆盖整个体积的多层自旋锁定图像,以及一种针对rf饱和效应校正多层数据以精确测量T1ϱ的算法。尽管技术发展普遍适用,但它们在动物和人类的软骨和脑组织中的效用得到了证明。尽管自旋锁相磁共振成像可用于研究不同的组织类型和病理,但本论文着重于自旋锁相层析方法在探讨关节软骨的生化和生物力学特性方面的应用。 T1ϱ的灵敏度大分子含量的变化使T1ϱ软骨分子变化的有前途的MR标志物,其变性在骨关节炎中起关键作用。了解T1ϱ之间的关系随着骨关节炎的发展,自旋锁相MRI方法应用于软骨退变模型:酶处理的牛外植体,细胞因子诱导的体内猪模型以及自然降解的骨关节炎人软骨标本。通过使用新型钠MRI策略对蛋白聚糖进行无创定量分析,证实了基于T1rhov;的软骨变性测量结果。 T1ϱ在骨关节炎的体外细胞因子模型中,MRI迈出了进一步的一步来追踪软骨生化含量和生物力学特性的逐步变化。

著录项

  • 作者

    Wheaton, Andrew James.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号