首页> 外文学位 >Separation of basic oligopeptides by ion-pairing reversed-phase chromatography.
【24h】

Separation of basic oligopeptides by ion-pairing reversed-phase chromatography.

机译:通过离子对反相色谱法分离碱性寡肽。

获取原文
获取原文并翻译 | 示例

摘要

The present thesis consist of five chapters. Chapter I introduces background information on the ion-pairing reversed-phase chromatography and liquid chromatography in the critical condition.;Chapter II decribes our study on the isocratic separation of oligolysine (dp = 2 to 8) using a fixed content of acetonitrile (ACN) (23%) and different concentrations of HFBA in the mobile phase (0.6-30.6 mM) on a Waters XBridge Shield RP18® column. We found that the retention time of oligolysine increases as the dp increases, because of an increased number of HFBA bound to the peptides. Furthermore, when [HFBA] increased, the retention time increased at different rates. The greater the dp, the faster the rate. Based on a closed pairing model that presumes an equilibrium between an unpaired state and the paired state with a fixed number of HFBA molecules, an equation was derived for the retention factor of oligolysine.;In Chapter III, we compare retention behaviors of oligolysine (dp = 2 to 8) and oligoarginine (dp = 2 to 8) when they are separated on the Waters XBridge Shield RP18® using fixed a ACN content (23%) and difference concentrations of HFBA (0.4-30.6 mM) in the mobile phase. The retention time of oligoarginine also increased at different rates as [HFBA] increased. The greater the dp, the faster the rate. The retention time of oligolysine is shorter than that of oligarginine having the dame dp. We applied Eq.1 to analyze the plot of ln k as a function of [HFBA] for each oligopeptide component to obtain the values for n, Kip,m, and βKd,ip. For oligolysine, n increases linearly as dp increase and oligoarginine exhibits an accelerated increase in n as dp rises. The plot of ln βKd,ip against dp followed a linear relationship for both peptides.;In Chapter IV, we study the effect of mobile phase composition on the retention of oligolysine (dp = 2 to 8) on the Waters XBridge Shield RP18 ®. The ACN content was changed from 20% to 33% and the HFBA concentration from 0.7 to 38.4 mM. We investigated the effect of [HFBA] and percentage of ACN on the resolution in separating the peptides and determined the optimal mobile phase composition. We applied Eq.1 to fit the plot of ln k as a function of [HFBA] for each ACN content, which provided us values for n, Kip,m, and β Kd,ip. n. We found that β KD,ip decreases as the ACN content increases and the decrease slows down as the percentage of ACN increases, possibly caused by ACN enrichment in the stationary phase.;The study described in Chapter V used a different column, SuperAW 3000 ®, to separate an oligolysine mixture (dp = 3 to 11) in different separation modes including ion exchange, size exclusion, critical condition and reversed phase. The analysis was carried on the SuperAW 3000® column with heptafluorobutyric acid (HFBA) as an ion-pairing reagent. We changed either the percentage of ACN at a fixed concentration of HFBA or the concentration of HFBA at a fixed percentage of ACN to investigate the effects of the percentages ACN and HFBA on the retention of oligolysine in different separation modes. A low molecular weight polyethylene glycol and a low molecular weight polypropylene glycol was used as references in different conditions. We compared the reversed-phase separation on Xbridge Shield ® and SuperAW 3000®, at different concentrations of HFBA. We also found that both ion-exchange and hydrophobic interaction play a role in the separation of oligolysine on SuperAW 3000®, when [HFBA] was low. (Abstract shortened by UMI.).
机译:本论文共分五章。第一章介绍了临界条件下离子对反相色谱和液相色谱的背景信息。第二章介绍了使用固定含量的乙腈(ACN)等度分离低聚赖氨酸(dp = 2至8)的研究。 (23%)和在Waters XBridge ShieldRP18®色谱柱上流动相中不同浓度的HFBA(0.6-30.6 mM)。我们发现寡聚赖氨酸的保留时间随着dp的增加而增加,这是因为与肽结合的HFBA数量增加。此外,当[HFBA]增加时,保留时间以不同的速率增加。 dp越大,速率越快。基于一个封闭的配对模型,该模型假定未配对状态和具有固定数目HFBA分子的配对状态之间的平衡,得出了寡聚赖氨酸的保留因子方程。在第三章中,我们比较了寡聚赖氨酸的保留行为(dp = 2至8)和低聚精氨酸(dp = 2至8),当它们在Waters XBridge ShieldRP18®上使用固定的ACN含量(23%)和不同浓度的HFBA(0.4-30.6 mM)在流动相中进行分离时。随着[HFBA]的增加,低聚精氨酸的保留时间也以不同的速率增加。 dp越大,速率越快。低聚赖氨酸的保留时间比具有dme dp的低聚精氨酸的保留时间短。我们使用等式1分析了每个寡肽组分的ln k作为[HFBA]的函数的图,以获得n,Kip,m和βKd,ip的值。对于低聚赖氨酸,n随着dp的增加而线性增加,而低聚精氨酸随着dp的增加而显示出n的加速增加。两种肽的lnβKd,ip对dp的关系均呈线性关系。在第四章​​中,我们研究了沃特世XBridge Shield RP18®上流动相组成对寡聚赖氨酸(dp = 2至8)保留的影响。 ACN含量从20%更改为33%,HFBA浓度从0.7更改为38.4 mM。我们研究了[HFBA]和ACN百分比对分离肽的分离度的影响,并确定了最佳的流动相组成。对于每个ACN含量,我们应用公式1来拟合ln k作为[HFBA]的函数的图,这为我们提供了n,Kip,m和βKd,ip的值。 。我们发现,随着ACN含量的增加,βKD,ip降低,而随着ACN百分比的增加,降低速度减慢,这可能是由于固定相中ACN富集引起的。第五章中的研究使用了另一列SuperAW 3000® ,以不同的分离模式(包括离子交换,尺寸排阻,临界条件和反相)分离低聚赖氨酸混合物(dp = 3至11)。使用七氟丁酸(HFBA)作为离子对试剂在SuperAW3000®色谱柱上进行分析。我们更改了固定浓度的HFBA上的ACN百分比或固定浓度的ACN上的HFBA浓度,以研究不同分离模式下ACN和HFBA百分比对寡聚赖氨酸保留率的影响。在不同条件下使用低分子量聚乙二醇和低分子量聚丙二醇作为参考。我们比较了不同浓度的HFBA在Xbridge Shield®和SuperAW3000®上的反相分离。我们还发现,当[HFBA]低时,离子交换和疏水相互作用在SuperAW3000®上的低聚赖氨酸的分离中都起作用。 (摘要由UMI缩短。)。

著录项

  • 作者

    Xie, Wenchun.;

  • 作者单位

    Polytechnic Institute of New York University.;

  • 授予单位 Polytechnic Institute of New York University.;
  • 学科 Chemistry Analytical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号