首页> 外文学位 >Emergent collective behavior in multi-agent systems: An evolutionary perspective.
【24h】

Emergent collective behavior in multi-agent systems: An evolutionary perspective.

机译:多主体系统中的新兴集体行为:进化的观点。

获取原文
获取原文并翻译 | 示例

摘要

The study of collective behavior involves the analysis of interactions among a set of agents that yield collective outcomes at the level of the group. The behavior is said to be emergent when it cannot be understood simply as the sum of its constituent parts. Further, group-level outcomes can in turn influence individual interactions. The complexity of this interplay makes the study of emergence challenging and exciting. This dissertation is focused on the study of emergent collective behavior from the perspective of evolution. Evolution is a simple yet powerful algorithm, which when acting on interacting entities in a dynamic environment, yields an array of fascinating behavior as manifest in the natural world. Natural collectives display a wide variety of cooperative behavior and have evolved to efficiently manage the inherent tradeoff between robust behavior and adaptability to dynamic environments. These properties have motivated the design of bio-inspired algorithms for sensing and decision-making in robotic collectives. In this work, we study the evolutionary mechanisms for cooperation and tradeoff management in biological collectives, with a focus on four related topics: replicator-mutator dynamics, collective migration, collective pursuit and evasion, and decision-making dynamics in swarms.;The replicator-mutator dynamics define a canonical model from evolutionary theory and have recently been used to study the evolution of language and the behavioral dynamics of social networks. While the analysis of stable equilibria of these dynamics has been a focus in the literature, we prove that certain conditions suffice for the equations to exhibit stable limit cycles. These cycles correspond to oscillations of grammar dominance in language evolution and to oscillations in behavioral preferences in social networks. For the collective migration problem, it is well-established that a small group of leaders can guide a large swarm of followers. It is less clear how presumably self-interested individuals have evolved to take on such divergent roles. We design a network-based evolutionary model to understand the evolution of leadership in migration, with a focus on the role of network topology on the emergent dynamics. Pursuit and evasive behaviors are ubiquitous in biology and are key drivers for collective motion. We use computational simulations and analytical calculations to study a co-evolving pursuit and evasive system, and incorporate the evolved strategies in a cyclic pursuit-evasion collective motion model. The 'stop-signaling' inhibitory mechanism has been recently shown to be critical to the decentralized decision-making dynamics in honeybee swarms. We investigate bifurcations in a model of swarm decision-making as a function of the stop-signal and the values of different alternatives, and present a comprehensive analysis of the dynamics of the model.
机译:集体行为的研究涉及一组在小组级别产生集体结果的行为者之间的相互作用的分析。当无法简单地将其理解为其组成部分的总和时,就可以认为该行为是紧急的。此外,小组层面的结果反过来又会影响个人的互动。这种相互作用的复杂性使得对涌现的研究充满挑战和兴奋。本文从进化的角度着眼于新兴集体行为的研究。进化是一种简单但功能强大的算法,当在动态环境中对相互作用的实体进行操作时,会产生一系列引人入胜的行为,如在自然世界中表现出来的那样。自然集体表现出各种各样的合作行为,并且已经进化为有效地管理健壮行为和对动态环境的适应性之间的固有权衡。这些特性推动了生物启发算法的设计,以用于机器人集体的感知和决策。在这项工作中,我们研究了生物集体中合作与权衡管理的进化机制,重点是四个相关主题:复制者-变异者动力学,集体迁移,集体追求与逃避以及群体中的决策动态。 -mutator动力学根据进化理论定义了典范模型,最近已用于研究语言的进化和社交网络的行为动力学。虽然这些动力学的稳定平衡分析一直是文献的重点,但我们证明某些条件足以满足方程式的要求,以显示稳定的极限环。这些循环对应于语言进化中的语法优势的振荡以及社交网络中的行为偏好的振荡。对于集体移民问题,众所周知,一小撮领导人可以引导大批追随者。不清楚的是,自私的人如何演变为扮演这种不同的角色。我们设计了一个基于网络的进化模型,以了解迁移过程中领导力的演变,重点是网络拓扑在紧急动态中的作用。追求和逃避行为在生物学中无处不在,并且是集体运动的关键驱动力。我们使用计算模拟和分析计算来研究共同进化的追逃和回避系统,并将进化后的策略纳入循环追逃的集体运动模型中。最近已经证明,“停止信号传递”抑制机制对于蜜蜂群的分散决策动态至关重要。我们研究了群体决策模型中的分叉与停止信号以及不同选择的值的关系,并对该模型的动力学进行了全面分析。

著录项

  • 作者

    Pais, Darren.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Applied Mathematics.;Engineering Robotics.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号