首页> 外文学位 >Solid-fluid mixture microstructure design of composite materials with application to tissue engineering scaffold design.
【24h】

Solid-fluid mixture microstructure design of composite materials with application to tissue engineering scaffold design.

机译:复合材料的固液混合微结构设计及其在组织工程支架设计中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The ability to design the material microstructure brings the use of composite materials into the next generation. In this paper, we report pioneering research to implement the computational material microstructure design into the internal architecture design for a tissue engineering scaffold. A tissue engineering design postulate is that scaffolds should match specified healthy tissue stiffness, while concurrently providing sufficient porosity for cell migration and tissue regeneration. Employing the inverse homogenization method and the adaptive topology optimization method, a complex 3D microstructure can be designed to perform with the anisotropic elastic stiffness and porosities analogous to a native bone specimen. Besides the elastic stiffness from its solid part, fluid in the porous region also plays an important role in tissue engineering. The flow of fluid through the pores brings nutrients to cells in the tissue matrix and also removes their waste. Fluid permeability of cylinderical trabecular bone grafts was found to predict clinical success. Deriving from Darcy's Law, we developed software to calculate the homogenized fluid permeability of 3D cancellous voxel models, which were directly reconstructed from micro-CT images. Furthermore, an Evolutionary Structural Optimization (ESO) algorithm was utilized to maximize fluid permeability in the microstructure. The fluid optimization scheme was then collaborated with solid phase optimization through Multidisciplinary Design Optimization (MDO) to create an integrated solid-fluid mixture microstructure design. In addition, to ensure the fabrication feasibility, we also implemented a post-optimization process to enhance design results by improving the dynamic stiffness to eliminate weak connections and checkerboard pattern. The design scaffolds were then built by an indirect solid freeform fabrication (SFF) technique using various bio-compatible materials and ready for further investment. This computational design scheme based on topology optimization was developed in order to provide a general solution for tissue engineering scaffold internal architecture design and fabrication. Hence, the subsequently engineered scaffold will provide a biomimetic mechanical environment, while maximizing fluid permeability and maintaining sufficient porosity for tissue ingrowths.
机译:设计材料微观结构的能力将复合材料的使用带入了下一代。在本文中,我们报道了在组织工程支架的内部结构设计中实现计算材料微观结构设计的开创性研究。组织工程设计的前提是,支架应符合规定的健康组织刚度,同时为细胞迁移和组织再生提供足够的孔隙率。利用逆均质化方法和自适应拓扑优化方法,可以设计复杂的3D微观结构,使其具有类似于天然骨标本的各向异性弹性刚度和孔隙率。除了其固体部分的弹性刚度外,多孔区域中的流体在组织工程中也起着重要作用。通过孔的流体流将营养物质输送到组织基质中的细胞,并清除它们的废物。发现圆柱状小梁移植物的渗透性可预测临床成功。源自达西定律,我们开发了用于计算3D松质体素模型的均匀流体渗透率的软件,该模型直接从micro-CT图像重建。此外,采用了进化结构优化(ESO)算法来最大化微结构中的流体渗透性。然后,通过多学科设计优化(MDO)将流体优化方案与固相优化协作,以创建集成的固液混合物微结构设计。此外,为了确保制造的可行性,我们还实施了后优化过程,以通过改善动态刚度来消除薄弱的连接和棋盘格图案来增强设计效果。然后,通过使用各种生物相容性材料的间接固体自由形式制造(SFF)技术构建设计支架,并准备进行进一步的投资。开发了这种基于拓扑优化的计算设计方案,以便为组织工程支架内部架构的设计和制造提供通用解决方案。因此,随后设计的支架将提供仿生机械环境,同时使流体渗透性最大化并为组织向内生长保持足够的孔隙率。

著录项

  • 作者

    Lin, Cheng-Yu.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.; Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号