首页> 外文学位 >Nonlinear circuits for signal generation and processing in CMOS.
【24h】

Nonlinear circuits for signal generation and processing in CMOS.

机译:用于在CMOS中生成和处理信号的非线性电路。

获取原文
获取原文并翻译 | 示例

摘要

As Moore’s law predicted, transistor scaling has continued unabated for more than half a century, resulting in significant improvement in speed, efficiency, and integration level. This has led to rapid growth of diverse computing and communications technologies, including the Internet and mobile telephony. Nevertheless, we still face the fundamental limit of noise from transistors and passive components. This noise limit becomes more critical at higher frequencies due to the decrease in intrinsic transistor gain as well as with voltage scaling that accompanies the transistor scaling. On the other hand, insufficient transistor gain and breakdown in silicon limits high-power signal generation at sub-millimeter frequencies that is essential in many security and medical applications, including detection of concealed weapons and bio/molecular spectroscopy for drug detection and breath analysis for disease diagnosis.;To go beyond these limits, we propose a new circuit design methodology inspired by nonlinear wave propagation. This method is closely related to intriguing phenomena in other disciplines of physics such as nonlinear optics, fluid mechanics, and plasma physics. Based on this, in the first part of this study, we propose a passive 20-GHz frequency divider for the first time implemented in CMOS. This device has close to ideal noise performance with no DC power consumption, which can potentially reduce overall system power and phase noise in high-frequency synthesizers. Next, to achieve sensitivity toward the thermal noise limit, we propose a 10-GHz CMOS noise-squeezing amplifier. This amplifier enhances sensitivity of an input signal in one quadrature phase by 2.5 dB at the expense of degrading the other quadrature component. Lastly, we introduce an LC lattice to generate 2.7 Vp–p, 6 ps pulses in CMOS using constructive nonlinear wave interaction. The proposed lattice exhibits the sharpest pulse width achieved for high-amplitude pulses (>1 V) in any CMOS processes.
机译:正如摩尔定律所预言的那样,晶体管的缩放在过去的半个世纪中一直没有减弱,从而导致速度,效率和集成度得到了显着提高。这导致了包括互联网和移动电话在内的各种计算和通信技术的快速增长。尽管如此,我们仍然面临来自晶体管和无源元件的噪声的基本限制。由于固有晶体管增益的降低以及晶体管缩放所伴随的电压缩放,该噪声限制在较高频率下变得更加关键。另一方面,晶体管增益不足和硅中的击穿限制了亚毫米级频率上的高功率信号生成,这在许多安全和医疗应用中至关重要,包括隐藏武器的检测以及用于药物检测和呼吸分析的生物/分子光谱学为了超越这些限制,我们提出了一种受非线性波传播启发的新电路设计方法。此方法与其他物理学学科中的有趣现象密切相关,例如非线性光学,流体力学和等离子物理学。基于此,在本研究的第一部分中,我们首次提出了在CMOS中实现的无源20 GHz分频器。该器件在没有DC功耗的情况下具有接近理想的噪声性能,可以潜在地降低高频合成器的整体系统功率和相位噪声。接下来,为了实现对热噪声极限的灵敏度,我们提出了一种10 GHz CMOS噪声压缩放大器。该放大器将一个正交相位中输入信号的灵敏度提高了2.5 dB,但以降低另一个正交分量为代价。最后,我们介绍了一个LC晶格,它使用相长非线性波相互作用在CMOS中生成2.7 Vp-p,6 ps脉冲。所提出的晶格展示了在任何CMOS工艺中对于高振幅脉冲(> 1 V)所实现的最尖锐的脉冲宽度。

著录项

  • 作者

    Lee, Wooram.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号