首页> 外文学位 >Theoretical and mass spectrometric studies of damaged nucleobases and analogs toward understanding glycosylase mechanisms.
【24h】

Theoretical and mass spectrometric studies of damaged nucleobases and analogs toward understanding glycosylase mechanisms.

机译:理论和质谱研究受损的核碱基和类似物,以了解糖基化酶的机制。

获取原文
获取原文并翻译 | 示例

摘要

The focus of this thesis is the examination of the thermochemical properties, primarily the gas phase acidity, proton affinity, and leaving group (LG) ability of damaged nucleobases and related species via mass spectrometry (FT-ICR, ion trap) and theoretical studies (quantum mechanical calculations). Our main hypothesis is that the study of intrinsic, gas-phase properties of the damaged nucleobases will lend insight into the mechanism of their excision from DNA. We study damaged nucleobases and analogs that are cleaved from DNA by various glycosylases: uracil-DNA glycosylase (UDG), 3-methyladenine glycosylase II (AlkA), and MutY glycosylase.;The LG ability of the N1-deprotonated 3-methyluracil anion relative to the N1-deprotonated 3-methylthymine anion is examined in the context of the UDG enzymatic reaction that excises uracil but not thymine from DNA. We confirmed that despite the close acidities uracil is a much better LG in the gas phase. Another interesting disparity between the LG ability and acidity is discovered for uracil substrates: when we examined hydrochloric acid and 3-methyluracil in the gas phase we found that despite similar acidities, chloride is a better LG than N1-deprotonated 3-methyluracil. We propose that the difference in LG ability is due to the different natures of the LGs (resonance vs. inductive stabilization). To test the hypothesis, a series of pyridone substrates were designed and examined.;AlkA is an enzyme that cleaves a wide range of damaged bases from DNA. Herein we examine 3- and 7-methylated AlkA purine substrates. The damaged nucleobases are found to be more acidic than the normal nucleobases. Because of this increased acidity, the damaged bases would be expected to be more easily cleaved from DNA by AlkA (their conjugate bases should be better LGs). We find that the acidity correlates to the AlkA excision rates, which lends support to an AlkA mechanism wherein the enzyme provides a nonspecific active site, and nucleobase cleavage is dependent on the intrinsic N-glycosidic bond stability.;The acidities and proton affinities of adenine and six adenine analogs that were designed to test various features of the enzyme MutY are also studied to allow better understanding of the mechanism of adenine removal by MutY.
机译:本论文的重点是通过质谱分析(FT-ICR,离子阱)和理论研究来研究热化学性质,主要是气相酸度,质子亲和力和受损核碱基及相关物种的离去基(LG)能力。量子力学计算)。我们的主要假设是,对受损核碱基的内在,气相性质的研究将使人们深入了解其从DNA切除的机理。我们研究了通过各种糖基化酶从DNA切割的受损核碱基和类似物:尿嘧啶DNA糖基化酶(UDG),3-甲基腺嘌呤糖基化酶II(AlkA)和MutY糖基化酶; N1-去质子化的3-甲基尿嘧啶阴离子相对分子的LG能力在UDG的酶促反应中检测了N1去质子化的3-甲基胸腺嘧啶阴离子的残基,该酶从DNA中去除了尿嘧啶而不是胸腺嘧啶。我们确认,尽管酸度接近,但尿嘧啶是气相中更好的LG。对于尿嘧啶底物,LG能力与酸度之间存在另一个有趣的差异:当我们在气相中检查盐酸和3-甲基尿嘧啶时,我们发现尽管酸度相似,但氯化物比N1去质子化的3-甲基尿嘧啶更好。我们提出LG能力的差异是由于LG的不同性质(共振与电感稳定)。为了检验该假设,设计并检查了一系列吡啶酮底物。AlkA是一种酶,可从DNA切割出广泛的受损碱基。在这里,我们研究了3和7甲基化的AlkA嘌呤底物。发现受损的核碱基比正常的核碱基酸性更高。由于这种增加的酸度,预计被破坏的碱基更容易被AlkA从DNA上裂解(它们的共轭碱基应该是更好的LG)。我们发现酸度与AlkA切除率相关,这为AlkA机制提供了支持,其中酶提供了非特异性的活性位点,而核碱基的裂解取决于内在的N-糖苷键的稳定性。;腺嘌呤的酸度和质子亲和力还研究了六个旨在测试MutY酶各种功能的腺嘌呤类似物,以更好地了解MutY去除腺嘌呤的机制。

著录项

  • 作者

    Michelson, Anna.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Chemistry Analytical.;Chemistry Organic.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号