首页> 外文学位 >Quantifying the effects of climate change on crop yields.
【24h】

Quantifying the effects of climate change on crop yields.

机译:量化气候变化对农作物产量的影响。

获取原文
获取原文并翻译 | 示例

摘要

Climate is one of the primary determinants of agricultural productivity. For any given location and crop, climate determines the length of the growing season, the amount of heat that can be used in photosynthesis and carbon fixing, and the expected amount of temperature and water stress. Anthropogenic warming of the climate is therefore of potentially great consequence to agriculture and food security on a planet under increasing environmental and population pressures. Technology in the form of improved seed varieties, chemical inputs, and mechanization all serve to mitigate to varying degrees the deleterious effects of climate-induced stress on crops. In the U.S. this 'technology signal' is evident in the most widely grown cereal crops, particularly corn ( Zea mays), where yields have increased by two bushels per year on average since 1950. Despite the overall increasing yield trend, crops are still vulnerable to climatic variability and extreme events such as drought and heat stress, which will reduce yields below the expected amount. The response of crops to an increase in these extreme events is uncertain because of the co-mingling effects of technology and climate that is manifest in the observed yield trend. In addition, while there is high confidence that mean temperatures will increase in response to rising greenhouse gasses, our limited knowledge and imperfect ability to model the climate system results in large uncertainties about how the more agriculturally-relevant tails of the temperature distribution will change. This dissertation develops probabilistic projections of the potential effects of anthropogenic climate change on corn yields. Three research objectives are developed that improve our understanding of the climate change-yield relationship: (1) identify and evaluate the portions of the temperature distribution that drive yield variability notwithstanding the technological signal, (2) develop projections of how these agroclimate variables could change in the future while accounting for uncertainty, and (3) develop projections of the expected effects on crop yields given these changes in the agro-climate. These objectives are addressed in three research articles. The first article is an evaluation of recent changes in three agro-climate indices (frost days, thermal time, and heat stress index) in North America and the ability of general circulation models (GCMs) to reproduce the observed patterns and trends. The next article uses bootstrapping and a statistical method known as Bayesian Model Averaging (BMA) to develop probabilistic projections of the three agro-climate indices. The method accounts for important structural uncertainties between climate models that are often neglected or minimized in many impact studies. The final article uses the bootstrapping and BMA methods described in the second article, as well as an empirical climate-yield damage function, to develop probabilistic projections of corn yields in the 21 st century in the eastern U.S. for a high greenhouse gas emissions scenario. Two different sources of uncertainty in the projections are quantified: structural uncertainty between GCMs, and parametric uncertainty in the damage function due to spatial dependence between observations. The results show that severe corn yield damages are possible by the end of the 21st century if the current emissions trajectory is maintained over the entire interval. After accounting for both GCM and damage function uncertainty, the full 95% projection interval shows potential yield declines of between 16% and 77% by 2100, relative to current average yields. These results suggest that substantial adaptation and mitigation will have to occur if the concomitant impacts on global food security are to be avoided without also causing further environmental degradation.
机译:气候是农业生产力的主要决定因素之一。对于任何给定的地点和作物,气候决定了生长期的长短,可用于光合作用和固碳的热量以及预期的温度和水分胁迫。因此,在不断增加的环境和人口压力下,人为气候变暖可能对地球上的农业和粮食安全产生重大影响。改良种子品种,化学投入和机械化形式的技术都在不同程度上减轻了气候胁迫对农作物的有害影响。在美国,这种“技术信号”在生长最为广泛的谷物作物中尤为明显,尤其是玉米(自1950年以来玉米平均单产每年增加了2蒲式耳)。尽管总体呈上升趋势,但作物仍然脆弱受气候变化和极端事件(如干旱和高温胁迫)的影响,这将使单产降低至低于预期水平。由于所观察到的单产趋势显示出技术和气候的共同影响,因此农作物对这些极端事件增加的反应尚不确定。此外,尽管人们对平均温度会随着温室气体排放量的增加而充满信心,但我们有限的知识以及对气候系统建模的不完善能力导致人们对温度分布中与农业相关的尾部将如何变化存在很大的不确定性。本文对人为气候变化对玉米单产的潜在影响进行了概率预测。制定了三个研究目标,以增进我们对气候变化与产量关系的理解:(1)识别并评估温度分布中驱动产量变化的部分,尽管存在技术信号;(2)预测这些农业气候变量如何变化(3)在农业气候变化的情况下,对作物产量的预期影响进行预测。在三篇研究文章中解决了这些目标。第一篇文章评估了北美三个农业气候指数(霜冻天数,热时间和热应力指数)的最新变化以及普通循环模型(GCM)再现观测模式和趋势的能力。下一篇文章使用自举和称为贝叶斯模型平均(BMA)的统计方法来开发三个农业气候指数的概率预测。该方法考虑了气候模型之间的重要结构不确定性,而这些不确定性在许多影响研究中通常被忽略或最小化。最后一篇文章使用第二篇文章中描述的自举和BMA方法以及经验性的气候-产量损失函数,针对温室气体高排放情景,对美国东部21世纪玉米产量进行概率预测。量化了预测中两种不同的不确定性来源:GCM之间的结构不确定性,以及由于观测值之间的空间依赖性而导致的损伤函数中的参数不确定性。结果表明,如果在整个时间间隔内保持当前的排放轨迹,到21世纪末玉米可能严重受损。在考虑了GCM和损害函数的不确定性后,相对于当前平均平均收益率,完整的95%预测区间显示到2100年潜在的收益率下降幅度在16%至77%之间。这些结果表明,如果要避免对全球粮食安全的随之而来的影响而又不造成进一步的环境恶化,就必须进行实质性的适应和减缓。

著录项

  • 作者

    Terando, Adam James.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Geography.;Atmospheric Sciences.;Climate Change.;Physical Geography.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号