首页> 外文学位 >Quantifying Carbon Exchange in Midwest U.S. Bioenergy Cropping Systems after Land-use Change: The Effects of Drought and Uncertainty in Model Predictions.
【24h】

Quantifying Carbon Exchange in Midwest U.S. Bioenergy Cropping Systems after Land-use Change: The Effects of Drought and Uncertainty in Model Predictions.

机译:量化土地用途变更后美国中西部生物能源作物种植系统中的碳交换:干旱和不确定性对模型预测的影响。

获取原文
获取原文并翻译 | 示例

摘要

When land-use was changed from natural ecosystems to tillage-based agroecosystems, terrestrial carbon storage was substantially reduced. To reverse this effect, agroecosystems today must use management practices that allocate significant amounts of carbon into the soil and protect that carbon from mechanisms that cause loss. Cellulosic bioenergy cropping systems are one type of land management that may contribute to carbon storage goals along with providing other ecosystem services. From 2010 to 2012, the net ecosystem carbon balance (NECB) of three potential Midwest cellulosic bioenergy cropping systems -- continuous maize (Zea maize L.), switchgrass (Panicum virgatum L.) and hybrid poplar (NM6, Populus nigra x P. maximowiczii) -- was quantified using a component-based modeling approach. Over the course of the experiment, the research site experienced a wide range of growing season drought conditions that illuminated significant differences between cropping systems. In addition, at the outset of the research project the hybrid poplar stands began showing signs of a defoliating fungus that eventually led to the removal of the hybrid poplar system from the final analysis because of incompatibilities with model structure. Final results showed reductions of ecosystem carbon in maize and maintenance of ecosystem carbon in switchgrass. Carbon removal during harvest was a significant contributor to the reduction of ecosystem carbon in maize and it was hypothesized that the legacy effects of past management and the high initial carbon content of the soil contributed to shifts in ecosystem carbon. A significant difference between the NECB of the two ecosystems was only found in the year without water stress, and the most severe drought conditions greatly increased the variability in NECB. The lack of differences in drought years were attributed to reduced maize harvest with increasing drought severity and increased model uncertainty during the most significant drought conditions. The fact that neither bioenergy cropping system increased carbon storage indicates these systems are not ideal for meeting goals to increase terrestrial carbon storage in Southern Wisconsin, assuming they are managed according to the methods described here.
机译:当土地利用从自然生态系统改变为以耕作为基础的农业生态系统时,陆地碳储量将大大减少。为了扭转这种影响,当今的农业生态系统必须采用管理实践,将大量的碳分配到土壤中,并保护碳免受造成损失的机制的影响。纤维素生物能源种植系统是土地管理的一种类型,可以促进碳储存目标并提供其他生态系统服务。从2010年到2012年,中西部三种潜在的纤维素生物能源作物种植系统的净生态系统碳平衡(NECB)-连续玉米(Zea maize L.),柳枝((Panicum virgatum L.)和杂种杨(NM6,Populus nigra x P. maximowiczii)-使用基于组件的建模方法进行了量化。在整个实验过程中,研究站点经历了生长季的各种干旱条件,这说明了耕作系统之间的显着差异。此外,在研究项目开始时,杂种杨树种开始表现出落叶的迹象,由于与模型结构不兼容,最终导致杂种杨系统从最终分析中被移除。最终结果显示玉米中生态系统碳的减少和柳枝switch中生态系统碳的维持。收获期间的除碳是减少玉米中生态系统碳的重要因素,据推测,过去管理的遗留效应和土壤中高的初始碳含量导致了生态系统碳的迁移。两种生态系统的NECB之间只有在没有缺水的年份才有显着差异,最严重的干旱条件大大增加了NECB的变异性。干旱年份之间缺乏差异是由于在最严重的干旱条件下玉米收成减少,干旱严重程度增加以及模型不确定性增加。两种生物能源种植系统均未增加碳储量这一事实表明,假设按照本文所述方法进行管理,这些系统对于实现增加威斯康星州南部陆地碳储量的目标而言并不理想。

著录项

  • 作者

    Cruse, Michael J.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Environmental science.;Biophysics.;Agronomy.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号