首页> 外文学位 >Characterization of the substrate binding dynamics of lactate dehydrogenase.
【24h】

Characterization of the substrate binding dynamics of lactate dehydrogenase.

机译:乳酸脱氢酶底物结合动力学的表征。

获取原文
获取原文并翻译 | 示例

摘要

We examine here the dynamics of forming the Michaelis complex of the enzyme lactate dehydrogenase (LDH) by characterizing the binding kinetics and thermodynamics of oxamate (a substrate mimic) to the binary LDH/NADH complex over multiple time scales, from nanoseconds to tens of milliseconds. In order to access such a wide time range, we employ standard stopped-flow kinetic approaches (slower than 1 ms) and laser induced temperature-jump relaxation spectroscopy (10 ns - 10 ms). The emission from the nicotinamide ring of NADH, and the IR absorption of the carbonyl stretch mode of oxamate (bound to the binary complex) at 1606 cm-1 are used as markers of structural transformations. The results are well explained by a kinetic model that has binding taking place via a sequence of steps: the formation of an encounter complex in a bi-molecular step followed by two unimolecular transformations on the microsecond/millisecond time scales. All steps are well described by single exponential kinetics. It appears that the various key components of the catalytically competent architecture are brought together as separate events, with the formation of strong hydrogen bonding between active site His195 and substrate early in binding and the closure of the catalytically necessary protein surface loop over the bound substrate as the final event of the binding process. This loop remains closed during the entire period that chemistry takes place for native substrates; however, motions of other key molecular groups bringing the complex in and out of catalytic competence appear to occur on faster times scales. The on-enzyme Kd's, (the ratios of the microscopic rate constants for each unimolecular step), are not far from one. Either substantial, ca. 10-15%, transient melting of the protein or rearrangements of hydrogen bonding and solvent interactions of a number of water molecules or both appears to take place to permit substrate access to the protein binding site. The nature of activating the various steps in the binding process seems to be one overall involving substantial entropic changes.
机译:我们在这里通过表征草酸盐(一种底物模拟物)与二元LDH / NADH复合物在从纳秒到几十毫秒的多个时间尺度上的结合动力学和热力学特征,来研究乳酸脱氢酶(LDH)的Michaelis复合物形成的动力学。 。为了访问如此宽的时间范围,我们采用了标准的停止流动力学方法(低于1 ms)和激光诱导的温度跳跃弛豫光谱法(10 ns-10 ms)。 NADH的烟酰胺环发射光和草酸盐(与二元配合物结合)在1606 cm-1处的草酸盐羰基拉伸模式的IR吸收用作结构转化的标志。动力学模型很好地解释了结果,该动力学模型通过一系列步骤发生了结合:在双分子步骤中形成相遇复合物,然后在微秒/毫秒时间尺度上进行两次单分子转化。所有步骤均通过单指数动力学很好地描述。看来,具有催化作用的体系结构的各个关键组成部分作为单独的事件聚集在一起,在结合早期在活性位点His195和底物之间形成了牢固的氢键,而在结合的底物上封闭了必需的催化性蛋白质表面环。绑定过程的最后事件。在对天然底物进行化学反应的整个过程中,该回路始终保持关闭状态。然而,使该配合物进入和脱离催化能力的其他关键分子基团的运动似乎发生在更快的时间尺度上。酶上的Kd(每个单分子步骤的微观速率常数之比)相距不远。无论是实质性的,约。似乎发生10-15%的蛋白质瞬时融化或氢键重排和许多水分子的溶剂相互作用或两者同时发生,以使底物接近蛋白质结合位点。在绑定过程中激活各个步骤的性质似乎是涉及大量熵变的整体。

著录项

  • 作者

    McClendon, Sebastian.;

  • 作者单位

    Yeshiva University.;

  • 授予单位 Yeshiva University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号