首页> 外文学位 >Gate and source/drain engineering for nanoscale MOSFET applications.
【24h】

Gate and source/drain engineering for nanoscale MOSFET applications.

机译:用于纳米级MOSFET应用的栅极和源极/漏极工程。

获取原文
获取原文并翻译 | 示例

摘要

Metal gates are expected to replace polysilicon gates in nanoscale MOSFETs. Full nickel silicidation of polysilicon gates is very promising for its process compatibility and for many other reasons. The work function of nickel silicide has been investigated, and a mid-gap work function value of 4.7eV was obtained for the undoped nickel mono-silicide (NiSi). Implantation of either arsenic or antimony into the polysilicon before silicidation can shift the NiSi work function towards the conduction band, while indium implantation can shift it towards the valence band. The physical mechanism responsible for this work function shift is the species pile-up at the oxide interface during the nickel silicidation process. Thus, dual work function metal gates can be obtained for NMOS and PMOS respectively by using a single full silicidation gate process. Silicidation conditions and species activation temperatures before silicidation were also found to have a significant effect on the work function shift.; Split-gate engineering has been studied for improving both the transconductance and the output resistance down to the nanoscale regime for MOSFET RF/Analog applications. The properly designed split gate HL device (H: high work function gate electrode close to the source; L: low work function gate electrode close to the drain) can enhance source carrier injection into the channel and increase the output resistance together, thus improving frequency-gain performance. NiSi split gates have been achieved by doping polysilicon gates locally with antimony or indium before gate full silicidation process, since the work functions are different for the NiSi gate regions with/without dopants under them. Improved current drive capability and output resistance have been observed in the NiSi split gate MOSFETs. The gate oxide was not degraded due to the low temperature silicidation process, and no poly-depletion-effects were observed in the NiSi gates. The second method, spacer gate engineering with gate partial silicidation, has been utilized to form a polysilicon/CoSi2 split gate. A split gate with a ∼0.15 mum length has been demonstrated.; Source/drain optimization in sub-50nm bulk and double-gate MOSFET have been studied by using TCAD tools. (Abstract shortened by UMI.)
机译:金属栅极有望取代纳米级MOSFET中的多晶硅栅极。多晶硅栅极的全镍硅化因其工艺兼容性和许多其他原因而非常有前途。已经研究了硅化镍的功函,对于未掺杂的单硅化镍(NiSi),获得的中间能隙功值为4.7eV。在硅化之前将砷或锑注入多晶硅中可使NiSi功函数向导带移动,而铟注入可使其向价带移动。导致该功函数变化的物理机制是在镍硅化过程中氧化物界面处的物质堆积。因此,通过使用单个全硅化栅极工艺,可以分别为NMOS和PMOS获得双功函数金属栅极。还发现了硅化条件和硅化前的物种活化温度对功函数的变化有显着影响。已经对分栅技术进行了研究,以将跨导和输出电阻均降低至纳米级,以用于MOSFET RF /模拟应用。正确设计的分栅HL器件(H:靠近源极的高功函数栅电极; L:靠近漏极的低功函数栅电极)可以增强源极载流子注入沟道并共同增加输出电阻,从而提高频率-获得性能。通过在栅极完全硅化工艺之前用锑或铟在多晶硅栅极上局部掺杂,可以实现NiSi分离栅,因为在其下方有/没有掺杂剂的NiSi栅极区域的功函数是不同的。 NiSi分离栅MOSFET的电流驱动能力和输出电阻得到了改善。由于低温硅化工艺,栅极氧化物并未降解,并且在NiSi栅极中未观察到多耗尽效应。第二种方法,具有栅极部分硅化的隔离栅工程技术,已被用于形成多晶硅/ CoSi2分离栅。已经证明了〜0.15微米长的分体式浇口。使用TCAD工具研究了亚50nm以下体和双栅MOSFET的源/漏优化。 (摘要由UMI缩短。)

著录项

  • 作者

    Yuan, Jun.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号