首页> 外文学位 >Measuring rate constants for the reaction of hypochlorous acid and biologically relevant molecules.
【24h】

Measuring rate constants for the reaction of hypochlorous acid and biologically relevant molecules.

机译:次氯酸与生物学相关分子反应的测量速率常数。

获取原文
获取原文并翻译 | 示例

摘要

Hypochlorous acid (HOCl) is a neutrophil-derived oxidant that is used to kill invading pathogens. Since HOCl reacts indiscriminately with biological molecules, such as amino acids, excess or misplaced production of HOCl can cause host tissue damage. Methionine (Met), one of only two naturally occurring sulfur amino acids, reacts fast with HOCl making it one of the first targets. The mechanism for this reaction is not well known but is assumed to go through a chlorosulfonium intermediate to form methionine sulfoxide (MetO), and then methionine sulfone (MetO2).;The first chapter of this dissertation introduces topics which will help the reader understand the significance of the research that is described herein. The second chapter presents the new method, which we called inhibitory titrations (IT). IT is an expansion of the competition method that is commonly used for measuring rate constants of fast reactions. IT tries to minimize assumptions that can create problems when indirectly measuring rate constants by: 1) making use of all the data collected (the rate constant measured using just the 50% inhibition point can underestimate the rate constant compared to that which fits all of the data); and 2) consideration of the stoichiometry of the reaction, which was important for accurately fitting data, especially when over-oxidation is possible. Our data shows that taking the stoichiometry of the reaction into consideration produces a better fit of the experimental data than assuming the reaction has a 1:1 stoichiometry. Without consideration of the rate law for the reaction, one may derive a first order rate constant from a second order reaction, leading to a misrepresentative rate constant.;The third chapter examines thioether reactions with HOCl with the expectation that a chlorosulfonium intermediate could be characterized. In general, HOCl reacts with thioethers, at neutral pH, with a second order rate constant of 106-108 M-1s-1, consistent with those reported in literature. The reactions studied did not show definitive evidence for the formation of a chlorosulfonium ion intermediate. However, the observed product, dehydromethionine (DHM), formed in the reaction of Met with HOCl (studied in greater detail in the fourth chapter), gives insight into the identity of the intermediate. Due to the hypothesized method by which DHM is formed, from intramolecular attack followed by ring closure, a halosulfonium intermediate can account for the formation of the DHM product.;The fourth chapter describes an investigation of the reaction of free Met, peptide bound Met, and protein bound Met, by various two electron oxidants. Oxidation of Met, which has a free amine, can form either MetO or DHM, a potential biomarker of oxidative stress. Different oxidants form different percentages of DHM. Two electron oxidants that react through oxygen transfer do not produce DHM, while halogenating species (but not the pseudohypohalous acid HOSCN) that react through a halide cation (X+, where X = I, Br, or Cl) transfer, produce a significant amount of DHM. The halogenating agents can be grouped by the yields of DHM they produce, where chlorinating agents produce around 43% DHM, brominating agents approximately 75%, and iodinating agents close to 100% DHM. The percentage of DHM formed is related to the type of halosulfonium that is formed, whether it is a chlorosulfonium, bromosulfonium, or iodosulfonium species. Comparing analogous halosulfonium species, the stability towards hydrolysis is I > Br > Cl, reflecting the trend observed in the yields of DHM. The ease of formation along with the high kinetic stability of DHM at neutral pH, which in the absence of catalysts has a half life of over 600 days, shows the high potential for DHM as a biomarker of protein oxidation by halogenating agents.;The fifth chapter is a summary of important findings of this research along with recommended future experiments. Overall, the dissertation examines fast (k = 106--108 M-1s -1) reactions of HOCl and related oxidants with biologically relevant molecules.
机译:次氯酸(HOCl)是中性粒细胞衍生的氧化剂,可用于杀死入侵的病原体。由于HOC1与生物分子如氨基酸无区别地反应,因此HOC1的过量或放错位置会引起宿主组织损伤。蛋氨酸(Met)是仅有的两种天然存在的硫氨基酸之一,可与HOCl快速反应,使其成为第一个靶标之一。该反应的机理尚不清楚,但假定先通过氯s中间体形成蛋氨酸亚砜(MetO),然后再形成蛋氨酸砜(MetO2)。本论文的第一章介绍了一些主题,这些主题将有助于读者理解在此描述的研究意义。第二章介绍了新方法,我们称其为抑制滴定(IT)。 IT是竞争方法的扩展,通常用于测量快速反应的速率常数。 IT试图通过以下方法最小化在间接测量速率常数时可能造成问题的假设:1)利用收集到的所有数据(仅使用50%抑制点测得的速率常数可能会低估速率常数,而不适合所有速率常数)。数据); 2)考虑反应的化学计量,这对于准确拟合数据非常重要,尤其是在可能发生过氧化的情况下。我们的数据表明,与假设反应的化学计量比为1:1相比,考虑到反应的化学计量比可以更好地拟合实验数据。如果不考虑反应的速率规律,则可能会从二阶反应中得出一阶速率常数,从而导致代表性不正确的速率常数。第三章考察了与HOCl的硫醚反应,期望可以表征氯ulf中间体。通常,HOCl在中性pH下与硫醚反应,其二级速率常数为106-108 M-1s-1,与文献报道的一致。所研究的反应未显示出形成氯s离子中间体的确切证据。但是,在Met与HOCl的反应中形成的观察到的产物脱氢甲硫氨酸(DHM)(在第四章中进行了更详细的研究)可以深入了解中间体的身份。由于假想DHM的形成方法,分子内攻击然后闭环导致卤化ulf中间体可以解释DHM产物的形成。;第四章描述了游离Met,肽结合的Met,与蛋白质结合的蛋氨酸,通过各种两种电子氧化剂结合。具有游离胺的Met的氧化可形成MetO或DHM(氧化应激的潜在生物标记)。不同的氧化剂形成不同百分比的DHM。通过氧转移发生反应的两种电子氧化剂不会产生DHM,而通过卤化物阳离子(X +,其中X = I,Br或Cl)转移的卤化物质(而不是假次卤代酸HOSCN)会产生大量的DHM。 DHM。卤化剂可按其产生的DHM的产率进行分类,其中氯化剂产生约43%的DHM,溴化剂产生约75%的碘化剂,碘化剂接近100%的DHM。形成的DHM的百分比与形成的卤化ulf的类型有关,无论是氯ulf,溴bro还是碘ulf。比较类似的卤化ulf物种,对水解的稳定性为I> Br> Cl,反映了DHM收率的趋势。 DHM易于形成,在中性pH下具有高动力学稳定性,在没有催化剂的情况下,其半衰期超过600天,显示出DHM作为通过卤化剂氧化蛋白质的生物标志物的潜力很大。本章总结了这项研究的重要发现以及建议的未来实验。总体而言,本文研究了HOCl和相关氧化剂与生物学相关分子的快速反应(k = 106--108 M-1s -1)。

著录项

  • 作者

    Beal, Jennifer.;

  • 作者单位

    The University of Oklahoma.;

  • 授予单位 The University of Oklahoma.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号