首页> 外文学位 >1.55 microm Indium Gallium Arsenide THz Synchronized Photoconductive Switch Array.
【24h】

1.55 microm Indium Gallium Arsenide THz Synchronized Photoconductive Switch Array.

机译:1.55微米砷化铟镓太赫兹同步光电导开关阵列。

获取原文
获取原文并翻译 | 示例

摘要

Metal-particle-in-semiconductor nanocomposites are of continuing interest in materials science to produce electronic, photonic, and thermoelectric devices, as well as chemical and biological nanosensors. These materials have successfully been employed for THz photoconductive devices operating at 800 nm. To date, producing devices operating at the desirable pump wavelength of 1.55 microm at which both mode-locked and single-frequency lasers needed for THz generation are readily available, remains challenging. Excessive dark current and prohibitively low breakdown voltage have been the primary impediments. Recent research has shown that ErAs:In0.53Ga0.47As designed for subpicosecond photoconductivity exhibits an exponential increase in resistivity when cooled to temperatures below 250 K. This increased resistivity gives promise to producing THz sources since higher bias voltages can be used, thus increasing the optical to THz conversion efficiency.;One of the major limitations of THz photoconductive sources is that it is challenging to harness sizeable power. Typical power levels generated by THz sources at 1.55 microm are generally in the low microwatts region. This dissertation demonstrates a 1.55 microm THz synchronized linear array that maximizes power and has attained an impressive maximum peak power of 123 microW. In addition, THz beam steering at 1.55 microm by phase control in the time domain is a young field. Beam steering is demonstrated with this phased array up to 14.6° using optical delay line units. The possibility of beam steering will prove beneficial in various applications, particularly in standoff imaging.
机译:半导体中的金属粒子纳米复合材料在材料科学中一直引起人们的兴趣,以生产电子,光子和热电器件,以及化学和生物纳米传感器。这些材料已成功用于工作在800 nm的THz光电导器件。迄今为止,生产在理想的泵浦波长为1.55微米的泵浦设备上仍存在挑战,在该泵浦波长下,产生THz所需的锁模激光器和单频激光器都容易获得。主要的障碍是过大的暗电流和过低的击穿电压。最近的研究表明,设计用于亚皮秒光电导的ErAs:In0.53Ga0.47As在冷却至低于250 K的温度时,电阻率呈指数级增长。由于可以使用更高的偏置电压,因此这种电阻率提高有望产生THz源,从而增加了光电到太赫兹的转换效率。太赫兹光电导源的主要限制之一是要利用相当大的功率是一项挑战。太赫兹源在1.55微米处产生的典型功率水平通常在低微瓦范围内。这篇论文展示了一个1.55微米THz同步线性阵列,该阵列最大程度地提高了功率,并获得了令人印象深刻的123 microW的最大峰值功率。另外,通过时域相位控制在1.55微米处进行太赫兹光束转向是一个年轻领域。使用光学延迟线单元,可在高达14.6°的相控阵中证明光束转向。光束转向的可能性将在各种应用中证明是有益的,尤其是在远距成像中。

著录项

  • 作者

    Williams, Kimani K.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Electronics and Electrical.;Engineering Packaging.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号