首页> 外文学位 >Systematic Framework for Molecular Design: Methodology and Applications.
【24h】

Systematic Framework for Molecular Design: Methodology and Applications.

机译:分子设计的系统框架:方法论和应用。

获取原文
获取原文并翻译 | 示例

摘要

We propose a new framework to automate, augment, and accelerate steps in computer-aided molecular design (CAMD). We also extend the scope of CAMD methods beyond group contribution models by employing accurate and extensive property models with a wide application domain. The molecular design problem is tackled in three stages: 1) composition design, 2) structure determination, and 3) extended design. Composition identification and structure determination are decoupled to achieve computational efficiency. Using approximate group contribution methods in the first stage, molecular compositions that fit the relaxed design targets are identified. In the second stage, isomer structures of solution compositions are determined systematically and structure-based property corrections are utilized to refine the solution pool. In the final stage, the design is extended beyond the scope of group contribution methods by utilizing problem-specific property models. As we progress through these stages, the information available about candidates increases while the size of the solution pool decreases. At each stage, optimization algorithms generate a large and diverse pool of candidate designs using an assortment of property models. The molecule generation machinery and external property models are bundled together to create an easy-to-use software.;The use of integer optimization techniques instead of enumeration at each stage, leads to an efficient algorithm, unrestricted in terms of the number of solutions sought and the maximum size of the molecule sought. By exploiting linearity through suitable problem formulations, large solution sets are easily handled. Unique solutions are generated effectively with cuts to handle redundancy in chemical space. These optimization-based models lead to orders of magnitude decrease in solution time over enumeration or MINLP approaches. Along with the group-contribution model used to build the molecules and predict their basic properties, higher-order structural descriptors and missing group contributions are also included to achieve high accuracy of property prediction. The modular nature of our approach also allows use of an assortment of property models for a specific application. Many design criteria that could not be included in simple molecular design can be incorporated. The proposed algorithm can be used as a stand-alone tool or it can be expanded as a part of more complex design problems like mixture design.;The developed solution techniques are applied to a variety of industrial problems. We design solvents for pharmaceutical drugs and solvents for degreasing process. The results for these case studies match the previously reported solvent families. The problem of designing automobile refrigerants is also solved to demonstrate the effectiveness of the framework. The identification of state-of-the-art refrigerants validates our approach. Many replacement molecules are designed for use as secondary heat transfer fluids in supermarkets. These arc compared on the basis of their heat transfer performance and are being analyzed for their global warming potential. We also identify existing compounds as replacement refrigerants for the growing market of electronic cooling systems. We design synthetic base fluids for deep drilling and investigate them for toxicity. The results not only match current base fluids but also provide better alternatives with improved economic features. We also present preliminary work on designing quaternary ammonium surfactants for oil-based and water-based drilling fluids.
机译:我们提出了一个新的框架来自动化,扩充和加速计算机辅助分子设计(CAMD)中的步骤。通过在广泛的应用领域中使用准确而广泛的属性模型,我们还将CAMD方法的范围扩展到了小组贡献模型之外。分子设计问题分为三个阶段:1)组成设计,2)结构确​​定和3)扩展设计。成分识别和结构确定解耦以实现计算效率。在第一阶段使用近似的基团贡献方法,确定适合宽松设计目标的分子组成。在第二阶段,系统地确定溶液组成的异构体结构,并利用基于结构的特性校正来完善溶液池。在最后阶段,通过使用特定于问题的属性模型,设计超出了小组贡献方法的范围。随着我们逐步完成这些阶段,有关候选人的可用信息会增加,而解决方案池的大小则会减少。在每个阶段,优化算法都会使用各种属性模型来生成大量多样的候选设计库。将分子生成机制和外部属性模型捆绑在一起,以创建易于使用的软件。;使用整数优化技术而不是在每个阶段进行枚举,都可以得到有效的算法,不受所寻求解决方案数量的限制以及所寻求分子的最大尺寸。通过利用合适的问题公式来利用线性,可以轻松地处理大型解决方案集。通过切割有效地生成独特的解决方案,以处理化学空间中的冗余。这些基于优化的模型导致求解时间比枚举或MINLP方法减少了几个数量级。除了用于构建分子并预测其基本特性的基团贡献模型外,还包括高阶结构描述符和缺失的基团贡献,以实现高精度的特性预测。我们方法的模块化性质也允许针对特定应用使用各种属性模型。可以纳入许多简单分子设计中未包含的设计标准。所提出的算法可以用作独立工具,也可以扩展为诸如混合设计之类的更复杂的设计问题的一部分。所开发的解决方案技术已应用于各种工业问题。我们设计用于药物的溶剂和用于脱脂工艺的溶剂。这些案例研究的结果与以前报道的溶剂系列相符。还解决了设计汽车制冷剂的问题,以证明该框架的有效性。对最先进制冷剂的识别验证了我们的方法。许多替代分子被设计用作超市中的二次传热流体。这些电弧是根据其传热性能进行比较的,目前正在对其全球变暖潜力进行分析。我们还将现有化合物识别为不断增长的电子冷却系统市场的替代制冷剂。我们设计用于深层钻井的合成基础液,并研究其毒性。结果不仅与当前的基础油相匹配,而且还提供了具有更好经济特性的更好替代品。我们还介绍了设计用于油基和水基钻井液的季铵表面活性剂的初步工作。

著录项

  • 作者

    Samudra, Apurva.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号