首页> 外文学位 >Quantum Simulation of Nanoscale Transport in Direct Energy Conversion Materials: From Thermal-Field Emitters to Thermoelectrics.
【24h】

Quantum Simulation of Nanoscale Transport in Direct Energy Conversion Materials: From Thermal-Field Emitters to Thermoelectrics.

机译:直接能量转换材料中纳米尺度传输的量子模拟:从热场发射器到热电学。

获取原文
获取原文并翻译 | 示例

摘要

In the ongoing struggle to resolve our current energy crisis, many agencies and researchers have spearheaded the application of direct energy conversion materials, such as thermoelectric and thermionic devices for waste heat recovery and power generation. However, the current state-of-the-art direct energy conversion materials are plagued by extremely low efficiencies that prevent a widespread solution. Recent effort to improve the efficiencies of these direct energy conversion materials has demonstrated a drastic increase through the inclusion of nanoscale features. With new advances in nanoscale materials comes the need for new models that can capture the underlying physics. Thus, this research has developed a necessary tool and a unique modeling approach (based on NEGF quantum simulations) that couples both the electrical and thermal response of nanoscale transport accounting for both the dissipative interactions of electron-phonon and phonon-phonon scattering. Through the aid of high performance computing techniques, the models developed in this research are able to explore the large design space of nano-structured thermoelectrics and thermionic materials. The models allow computational predictions to drive innovation for new, optimized, direct energy conversion materials.;A specific device innovation that has come from this research is the development of variably spaced superlattice (VSSL) devices, which are the next progression in band engineering thermoelectric materials. Computational findings of VSSL materials predict a seven times increase in ZT at room temperature when compared to traditional superlattice devices. Other thermoelectric materials studied include nanocrystalline composites (NCC) which were predicted to outperform equivalent superlattice structures as a results of decreases electron filtering. In addition to thermoelectric materials, this research has developed a quantum modeling technique to investigate and optimize nano-tipped thermionic and thermal-field devices. Results have provided incite into the applicability of Richardson's theory in characterizing the emission from wide-band gap thermionic materials. Ultimately, the quantum models developed in this research are a necessary tool for understanding nanoscale transport and innovating new nanostructured materials.
机译:在解决当前能源危机的持续努力中,许多机构和研究人员带头应用了直接能量转换材料,例如用于余热回收和发电的热电和热电子设备。但是,当前最先进的直接能量转换材料受到效率极低的困扰,这阻碍了广泛的解决方案。最近为改善这些直接能量转换材料的效率所做的努力已证明,通过包含纳米级特征,其使用量已大大增加。随着纳米级材料的新进展,需要能够捕获基本物理原理的新模型。因此,这项研究开发了一种必要的工具和一种独特的建模方法(基于NEGF量子模拟),该方法结合了纳米级传输的电响应和热响应,从而解决了电子声子和声子-声子散射的耗散相互作用。借助高性能计算技术,本研究开发的模型能够探索纳米结构热电材料和热电子材料的巨大设计空间。这些模型允许进行计算预测,以推动新型,优化的直接能量转换材料的创新。这项研究的一项特定器件创新是可变间距超晶格(VSSL)器件的开发,这是带状工程热电技术的下一步发展材料。与传统的超晶格器件相比,VSSL材料的计算发现预测室温下ZT会增加7倍。研究的其他热电材料包括纳米晶复合材料(NCC),由于减少了电子过滤,纳米复合材料的性能优于同等的超晶格结构。除了热电材料,这项研究还开发了一种量子建模技术,用于研究和优化纳米尖端的热电子和热场器件。结果证明了理查森理论在表征宽带隙热电子材料的发射特性方面的适用性。最终,在这项研究中开发的量子模型是理解纳米级传输和创新新型纳米结构材料的必要工具。

著录项

  • 作者

    Musho, Terence D.;

  • 作者单位

    Vanderbilt University.;

  • 授予单位 Vanderbilt University.;
  • 学科 Engineering Materials Science.;Nanotechnology.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号