首页> 外文学位 >The influence of particle shape on structure, mechanics, and transport in granular materials.
【24h】

The influence of particle shape on structure, mechanics, and transport in granular materials.

机译:颗粒形状对颗粒材料的结构,力学和运输的影响。

获取原文
获取原文并翻译 | 示例

摘要

The development of materials with tailored transport properties is essential to energy conversion and storage applications. Utilization of heterogeneous composite materials composed of discrete particles (i.e., granular materials) represents a promising approach to sustainable, scalable materials production. The so-called jamming point, which represents the transition between fluid-like and solid-like regimes of granular materials, has been the subject of recent fundamental studies. Prior studies have incorporated highly simplified grain shapes that do not reflect the diversity commonly observed in advanced composite materials (e.g., nanomaterials).;In the present work, the coupling of heat and charge transport to the level of order in jammed microstructures composed of faceted 3D grains is explored. The systems investigated include lithium ion battery cathodes composed of LiFePO4 nanoparticles, solid state H2 storage in packed beds composed of metal hydride particles, and the Platonic solids. Empirical and theoretical representations of particle shape are determined with single crystal growth models, statistical geometric models, and experimental measurements. An energy-based structural optimization method for the jamming of such arbitrary polyhedral grains is developed to model the mesoscopic structure of heterogeneous materials. Diffusion through the resulting microstructures is simulated with the finite volume method.;In LiFePO4 systems a strong dependence of jamming on particle shapes is observed, in which columnar structures aligned with the [010] direction inhibit diffusion along [010] in anisotropic LiFePO4. Transport limitations are induced by [010] columnar order and lead to catastrophic performance degradation in anisotropic LiFePO4 cathodes. Further, judicious mixing of nanoplatelets with additive nanoparticles can frustrate columnar ordering and thereby enhance the rate capability of LiFePO4 electrodes by nearly an order of magnitude. In contrast, metal hydride particles (and all Platonic solids except cubes) jam into highly disordered structures, as a result of anisotropic shape and size distribution. Such systems exhibit fundamentally different pathways of heat transport than that of packed spheres and consequently display close agreement with granular effective medium theory predictions. Also, despite possessing rigidity percolation at the jamming point, conductivity percolation does not occur at the jamming point. From these initial studies it is clear that knowledge of particle shape effects on structure and transport provide a pathway for scalable, bottom-up design of materials.
机译:具有特定运输性能的材料的开发对于能量转换和存储应用至关重要。利用由离散颗粒组成的非均质复合材料(即颗粒材料)代表了一种可持续的,可扩展的材料生产的有前途的方法。所谓的卡塞点代表了颗粒状材料在流体状态和固体状态之间的过渡,已经成为最近基础研究的主题。先前的研究已经结合了高度简化的晶粒形状,这些形状不能反映出高级复合材料(例如,纳米材料)中通常观察到的多样性。;在当前的工作中,热量和电荷传输耦合到由小平面构成的受阻微结构中的有序水平探索了3D颗粒。研究的系统包括由LiFePO4纳米颗粒组成的锂离子电池阴极,由金属氢化物颗粒组成的填充床中的固态H2储存以及柏拉图固体。颗粒形状的经验和理论表示由单晶生长模型,统计几何模型和实验测量确定。提出了一种基于能量的结构优化方法,用于干扰此类任意多面体晶粒,以对异质材料的介观结构进行建模。通过有限体积方法模拟了通过所得微观结构的扩散。在LiFePO4系统中,观察到了强烈的干扰对颗粒形状的依赖性,其中与[010]方向对齐的柱状结构抑制了各向异性LiFePO4沿[010]的扩散。传输限制是由[010]列序引起的,并导致各向异性LiFePO4阴极的灾难性性能下降。此外,将纳米片与添加剂纳米粒子的明智混合可破坏柱状有序排列,从而将LiFePO4电极的速率能力提高近一个数量级。相反,由于形状和尺寸的各向异性,金属氢化物颗粒(以及立方体以外的所有柏拉图固体)会堵塞成高度无序的结构。这样的系统显示出与填充球相比根本不同的传热路径,因此与颗粒有效介质理论预测显示出紧密的一致性。另外,尽管在阻塞点处具有刚性渗流,但是在阻塞点处不会发生电导率渗流。从这些初步研究中可以清楚地了解到,颗粒形状对结构和传输的影响为材料的可扩展,自底向上设计提供了一条途径。

著录项

  • 作者

    Smith, Kyle C.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.;Physics General.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号