首页> 外文学位 >Collagen fiber re-alignment and uncrimping in response to loading: Determining structure-function relationships using a developmental tendon mouse model.
【24h】

Collagen fiber re-alignment and uncrimping in response to loading: Determining structure-function relationships using a developmental tendon mouse model.

机译:胶原纤维重新排列和松开响应负载:使用发育性肌腱小鼠模型确定结构与功能的关系。

获取原文
获取原文并翻译 | 示例

摘要

Collagen fiber re-alignment and uncrimping are postulated mechanisms of structural response to load. It has been suggested that fibers re-orient in the direction of load and then "uncrimp" before collagen is tensioned and that in general, the structure is a result of the function tendons perform. However, little is known about how fiber re-alignment and uncrimping change in response to load, how this change relates to tendon mechanical properties, and if these changes are dependent on the underlying structure. Throughout postnatal development, dramatic structural and compositional changes occur in tendon. Postnatal tendons, with immature collagen networks, may respond to load in a different manner and timescale than mature collagen networks. Therefore, the overall objective of this study was to quantify the mechanical properties and structural response to load in a developmental mouse tendon model at 4, 10, 28 and 90 days old. Local collagen fiber re-alignment and crimp frequency were quantified throughout mechanical testing and local mechanical properties were measured. Throughout development, fiber re-alignment occurred at different points in the mechanical testing protocol. At early development, re-alignment was not identified until the linear (4 days) or toe-regions (10 days) of the mechanical test suggesting that fibers required a prolonged exposure to mechanical load before responding and that the immature collagen network present may delay re-alignment. The uncrimping of collagen fibers was identified during the toe-region of the mechanical test at all ages suggesting that crimp contributes to tendon nonlinear behavior. Additionally, results at 28 and 90 days suggested that collagen fiber crimp frequency decreased with increasing number of preconditioning cycles, which may affect toe-region properties. Mechanical properties and cross-sectional area increased throughout development. The insertion site demonstrated lower moduli values and a more disorganized fiber distribution compared to the midsubstance at all ages suggesting it experiences multi-axial loads. Further, the tendon locations demonstrated different re-alignment and crimp behaviors suggesting that locations may respond to load differently and develop at different rates. Results from this study suggest that structure affects the tendon's ability to respond to load and that the loading protocol applied may affect the measurement of mechanical properties.
机译:胶原纤维的重新排列和去卷曲是假定的结构对负荷的反应机制。有人提出,在胶原蛋白张紧之前,纤维会在载荷方向上重新定向,然后“松开”,通常,这种结构是肌腱发挥功能的结果。但是,人们对纤维的重新排列和去卷曲如何响应负载而变化,这种变化与肌腱力学性能之间的关系以及这些变化是否依赖于基础结构知之甚少。在整个产后发育过程中,肌腱发生剧烈的结构和成分变化。与成熟的胶原蛋白网络相比,具有未成熟胶原蛋白网络的产后肌腱可能以不同的方式和时间尺度响应负荷。因此,本研究的总体目标是量化4、10、28和90天大的发育小鼠腱模型中的力学性能和结构对负荷的响应。在整个机械测试中对局部胶原纤维的重新排列和卷曲频率进行定量,并测量局部机械性能。在整个开发过程中,光纤重新对准发生在机械测试方案的不同位置。在早期发育中,直到机械测试的线性(4天)或脚趾区域(10天)才发现重新对准,这表明纤维在响应之前需要长时间暴露于机械负荷,并且存在的未成熟胶原网络可能会延迟重新对齐。在所有年龄的机械测试的脚趾区域均发现了胶原纤维的未卷曲现象,这表明卷曲有助于肌腱的非线性行为。此外,在第28天和第90天的结果表明,胶原纤维的卷曲频率随着预处理循环次数的增加而降低,这可能会影响脚趾区域的特性。在整个开发过程中,机械性能和横截面积均增加。与所有年龄段的中间物质相比,插入部位均显示出较低的模量值和更混乱的纤维分布,表明其经受了多轴载荷。此外,肌腱位置表现出不同的重新排列和卷曲行为,表明该位置可能对载荷产生不同的响应并以不同的速率发展。这项研究的结果表明,结构会影响肌腱对负荷的反应能力,并且所施加的负荷方案可能会影响力学性能的测量。

著录项

  • 作者

    Miller, Kristin S.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 263 p.
  • 总页数 263
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号