首页> 外文学位 >Surface Chemistry and Precursor Material Effects on the Performance of Pyrolyzed Nanofibers as Anodes for Lithium-ion Batteries.
【24h】

Surface Chemistry and Precursor Material Effects on the Performance of Pyrolyzed Nanofibers as Anodes for Lithium-ion Batteries.

机译:表面化学和前体材料对热解纳米纤维作为锂离子电池阳极的性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

Next-generation lithium-ion batteries to meet consumer demands and new applications require the development of new electrode materials. Electrospinning of polymers is a simple and effective method to create one-dimensional, self-supporting materials, with no inactive components after pyrolysis. Composites of these nanofibers and high-capacity lithium materials have been demonstrated to possess superior reversible capacity than state-of-the-art commercial anodes.;Despite impressive reversible discharge capacities polyacrylonitrile-based composites are not ready for adoption in commercial applications. These materials suffer from irreversible losses of Li to formation on the electrode of the solid electrolyte interphase during the first charge of the cell. This thesis work has taken two approaches to engineer high-performing nanofiber-based electrodes.;First, the chemistry at the interface of the electrode and the electrolyte has been changed by depositing new surfaces. Attempts to create a graphitic fiber surface via plasma enhanced chemical vapor deposition did not result in an improvement of the irreversible losses. However, the experiments did demonstrate the growth of large surface area carbon nanowalls on the pyrolyzed electrospun fibers, creating a material which could serve as a substrate in catalysis or as an electrode for composite ultra-capacitors. Additionally, passivation surfaces were deposited by atomic layer deposition and molecular layer deposition. These new surfaces were employed to reduce the irreversible consumption of lithium by moving the charge transfer reaction to the interface of the carbon and the new material. The removal the lithium from the solvent prior to charge transfer limits the irreversible reduction of solvent by metallic lithium.;Alumina films grown by atomic layer deposition reduced lithium losses to the solid electrolyte interphase by up to 42% for twenty deposition cycles. This large improvement in irreversible capacity resulted in a nearly 50% reduction in reversible lithium storage. Thinner coatings of alumina had a less dramatic effect on both the irreversible capacity losses and the reversible discharge capacity. A coating of ten cycles of alumina at a temperature of 150 °C resulted in a 17% reduction in irreversible capacity with negligible impact on the reversible capacity.;Hybrid aluminum-organic films grown by molecular layer deposition also reduced irreversible lithium losses. The largest reduction was 23% for electrodes coated with 40 cycles of the alucone material. For all thicknesses studied these hybrid films delivered less improvement than the alumina grown by atomic layer deposition, with poor reversible lithium storage capacity available at high charging and discharging currents.;Second, polyacrylonitrile has served as the precursor for electrospun composite electrodes because of its ease of processing and well-known carbonization process. Polyimides represent a family of polymers for which the material properties can be tailored by careful monomer selection. These polymers were used as the non-woven matrix to create materials capable of delivering a larger percentage of their maximum reversible capacities at high currents when compared to polyacrylonitrile-based electrodes. These materials had a more graphitic structure based on Raman spectroscopy, and resulted in lower irreversible capacity losses than polyacrylonitrile-based fibers for fibers based on pyromellitic dianhydride and p-phenylene diamine.
机译:满足消费者需求和新应用的下一代锂离子电池需要开发新的电极材料。聚合物的静电纺丝是一种简单有效的方法,可产生一维,自支撑的材料,热解后没有惰性组分。这些纳米纤维和高容量锂材料的复合材料已被证明具有比最先进的商业阳极优异的可逆容量。尽管令人印象深刻的可逆放电容量,基于聚丙烯腈的复合材料尚未准备好用于商业应用。在电池的第一次充电期间,这些材料遭受不可逆的Li损失,形成固体电解质界面上的电极。这项工作采用了两种方法来设计高性能的纳米纤维基电极。首先,通过沉积新的表面改变了电极和电解质界面的化学性质。试图通过等离子体增强的化学气相沉积产生石墨纤维表面并不能改善不可逆损失。然而,实验确实证明了在热解电纺纤维上大表面积碳纳米壁的生长,产生了一种材料,可以用作催化的底物或复合超级电容器的电极。另外,通过原子层沉积和分子层沉积来沉积钝化表面。通过将电荷转移反应移至碳与新材料的界面,采用了这些新表面来减少不可逆的锂消耗。在电荷转移之前将锂从溶剂中去除限制了金属锂对溶剂的不可逆还原。通过原子层沉积生长的氧化铝膜在20个沉积循环中将锂到固体电解质中间相的损失降低了42%。不可逆容量的大幅提高导致可逆锂存储量减少了近50%。氧化铝涂层越薄,对不可逆容量损失和可逆放电容量的影响就越小。在150°C的温度下涂覆十个氧化铝周期可以使不可逆容量降低17%,而对可逆容量的影响则可以忽略不计。通过分子层沉积生长的混合铝有机薄膜还可以减少不可逆锂的损失。对于涂覆有40个周期的Alucone材料的电极,最大的降低是23%。对于所研究的所有厚度,这些杂化膜均比通过原子层沉积法生长的氧化铝改善程度较小,在高充电和放电电流下可逆的锂存储能力较差。其次,聚丙烯腈因其易用性而成为电纺复合电极的前体的加工和著名的碳化过程。聚酰亚胺代表一类聚合物,可以通过仔细选择单体来调整其材料性能。与基于聚丙烯腈的电极相比,这些聚合物被用作非织造基质,以产生能够在高电流下提供更大百分比的最大可逆容量的材料。与基于均苯四酸二酐和对亚苯基二胺的纤维相比,这些材料具有比基于聚丙烯腈的纤维更低的不可逆容量损失,并且基于拉曼光谱法具有更多的石墨结构。

著录项

  • 作者

    Loebl, Andrew James.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Chemical.;Nanoscience.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 261 p.
  • 总页数 261
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号