首页> 外文学位 >Nanotribological investigations of materials, coatings and lubricants for nanotechnology applications at high sliding velocities.
【24h】

Nanotribological investigations of materials, coatings and lubricants for nanotechnology applications at high sliding velocities.

机译:在高滑动速度下,用于纳米技术应用的材料,涂料和润滑剂的纳米摩擦学研究。

获取原文
获取原文并翻译 | 示例

摘要

The advent of micro/nanostructures and the subsequent miniaturization of moving components for various nanotechnology applications, such as micro/nanoelectromechanical systems (MEMS/NEMS), have ascribed paramount importance to the tribology and mechanics on the nanoscale. Most of these micro/nanodevices and components operate at very high sliding velocities (of the order of tens of mm/s to few m/s). Atomic force microscopy (AFM) studies to investigate potential materials, coatings and lubricants for these devices have been rendered inadequate due to the inherent limitations on the highest sliding velocities achievable with commercial AFMs (250 mum/s). The development of a new AFM based technique, done as part of this research work, has allowed nanotribological investigations over a wide range of velocities (up to 10 mm/s). The impacts of this research on the design and development of nanotechnology applications are profound. Research conducted on various materials, coatings and lubricants reveals a strong velocity dependence of friction, adhesion and wear on the nanoscale. Based on the experimental evidence, theoretical formulations have been conducted for nanoscale friction behavior to design a comprehensive analytical model that explains the velocity dependence. The model takes into consideration the contributions of adhesion at the tip-sample interface, high impact velocity related deformations at the contacting asperities and atomic scale stick-slip. Dominant friction mechanisms are identified and the critical operating parameters corresponding to their transitions are defined.; Wear studies are conducted at high sliding velocities for materials, coatings and lubricants to understand the primary failure mechanisms. A novel AFM based nanowear mapping technique is developed to map wear on the nanoscale and the interdependence of normal load and sliding velocity on sample surface wear is studied. This technique helps identify and classify wear mechanisms and determine the critical parameters responsible for their transitions. The promising tribological properties exhibited by diamondlike carbon (DLC) coating and its role as a potential protective coating for nanotechnology applications are discussed. Scale dependence of micro/nano-friction and -adhesion is also studied. The primary reason for the scale dependence is the sample surface roughness and the higher contact pressures that are encountered on the nanoscale. This study emphasizes the fact that material behavior on one scale cannot be assumed to hold on another scale. The interdependence of mechanical and tribological properties for various materials has been explored and tribologically ideal materials with low adhesion and friction for nanotechnology applications have been identified.
机译:微米/纳米结构的出现以及随后用于各种纳米技术应用(例如,微米/纳米机电系统(MEMS / NEMS))的移动部件的小型化,对纳米级的摩擦学和力学至关重要。这些微型/纳米器件和组件中的大多数都以很高的滑动速度(数十毫米/秒到几米/秒的数量级)运行。由于商业AFM(<250 mum / s)所能达到的最高滑动速度固有的局限性,因此无法研究用于这些设备的潜在材料,涂层和润滑剂的原子力显微镜(AFM)研究。作为这项研究工作的一部分,新的基于原子力显微镜的技术的发展已使纳米摩擦学研究可以在很宽的速度范围内(最高10 mm / s)进行。这项研究对纳米技术应用程序设计和开发的影响是深远的。对各种材料,涂料和润滑剂进行的研究表明,纳米级的摩擦,附着力和磨损具有很强的速度依赖性。基于实验证据,已针对纳米级摩擦行为进行了理论公式化,以设计一个解释速度依赖性的综合分析模型。该模型考虑了尖端-样品界面处的附着力,接触粗糙处与高冲击速度相关的变形以及原子尺度粘滑的贡献。确定主要的摩擦机制,并定义与它们的过渡相对应的关键操作参数。在高滑动速度下对材料,涂料和润滑剂进行磨损研究,以了解主要的失效机理。提出了一种基于原子力显微镜的新型纳米磨损作图技术,以在纳米尺度上绘制磨损,并研究了法向载荷和滑动速度与样品表面磨损之间的相互关系。该技术有助于识别和分类磨损机制,并确定造成其过渡的关键参数。讨论了类金刚石碳(DLC)涂层表现出的有希望的摩擦学性能及其作为纳米技术应用的潜在保护涂层的作用。还研究了微观/纳米摩擦和粘附的尺度依赖性。尺度依赖性的主要原因是样品表面粗糙度和纳米尺度上遇到的更高的接触压力。这项研究强调了这样一个事实,即不能假定一个尺度上的物质行为可以保持另一尺度。已经探索了各种材料的机械和摩擦学性能的相互依赖关系,并且已经确定了摩擦学上理想的,对纳米技术应用具有低附着力和摩擦力的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号