首页> 外文学位 >Progress in developing an ovarian cancer screen based on whispering gallery mode imaging.
【24h】

Progress in developing an ovarian cancer screen based on whispering gallery mode imaging.

机译:基于耳语画廊模式成像开发卵巢癌筛查的进展。

获取原文
获取原文并翻译 | 示例

摘要

Despite considerable research devoted to identifying biomarkers for ovarian cancer, no screening method is currently available for routine early detection of the disease. While highly treatable in its early stages, a lack of symptoms early in the disease progression often results in the cancer spreading to other tissues before being diagnosed, significantly reducing the survival rate. CA-125 is currently the most common biomarker used for the detection of ovarian cancer; however its poor diagnostic reliability when measured alone necessitates the use of a multiplexed biomarker screen for accurate early-stage diagnosis. Numerous protein biomarkers have been identified for this purpose as well as small, noncoding oligonucleotides referred to as microRNAs. New assays for screening this combination of multiple analyte types require the capability of detecting any class of target, including proteins and nucleic acids.;This work describes progress in developing a label-free, multiplexed assay for the early detection of ovarian cancer. The instrumental approach exploits tiny microresonators that take advantage of a phenomenon referred to as whispering gallery mode (WGM) resonances. This method is based on the ability of circular dielectrics to store light through continuous total internal reflection, where the wavelengths stored are dependent upon the surrounding refractive index. By attaching capture agents to the sensor surface, binding events change the local RI and shift the resonant wavelength which can be used to quantify analyte binding. To combine the favorable attributes of two traditional WGM techniques, in Chapter 2 we introduce a new approach for biosensing which combines microsphere WGM resonators with fluorescence imaging to create a flexible platform for multiplexed biosensing. It is shown that the multiplexing capability is vastly increased using this imaging technique as compared to other WGM methods, enabling the detection of multiple targets in a single assay. The feasibility of using this method for biomarker measurement is demonstrated by detecting two biomarkers linked to ovarian cancer pathogenesis, CA-125 and tumor necrosis factor-alpha. To advance the WGM imaging technique toward clinical use, we show in Chapter 3 that non-specific binding is not limiting by detecting CA-125 doped into serum samples. The eventual clinical utility of this approach is illustrated by measuring CA-125 levels in serum collected from a healthy donor and a patient diagnosed with ovarian cancer.;Although whispering gallery detection is effective in biomarker measurement, in practice the sensing region covers a very small area. As in all label-free assays, non-specific binding can be an issue for WGM detection and it is desirable that all immobilized antibodies be active. It is crucial, therefore, that all capture antibodies are immobilized in the appropriate orientation for efficient analyte binding. To maximize sensor performance, therefore, new techniques capable of characterizing antibody orientation at the single molecule level are required. A new approach for measuring single antibody orientations is therefore introduced and validated in well-characterized test systems using model lipid membranes.;It has been shown that polarized total internal reflection fluorescence microscopy (PTIRF-M) is capable of directly determining the three-dimensional orientation of single molecules. Using Langmuir-Blodgett monolayers of DPPC, we show in Chapter 5 that these orientations can be used to track membrane structure at the molecular level. We utilize this to find the characteristic "equivalent surface pressure" between lipid monolayers formed by Langmuir-Blodgett deposition and supported lipid bilayers formed by vesicle fusion. The single molecule approach is further explored by comparing the condensing effects of sterol additives in each system. These measurements show that orientations respond to the addition of condensing sterols, further supporting the notion that this technique can track structural changes at the molecular level. As future single-molecule work will be used to determine antibody orientations in a dynamic, fluid environment, it is important to explore the time-resolved capabilities of this approach. In Chapter 6 we show that single molecule orientational changes can be captured with ∼1s temporal resolution. By increasing the hydration levels of model membrane systems through changes in relative humidity, we show that both structural and dynamic changes occur within the membrane at the molecular level. In addition, it was observed that this technique is capable of measuring three-dimensional orientational changes in real time. Future goals include employing this method to probe antibody orientations on substrates in situ, so these studies are an important step for understanding how the technique may be applied in fluidic systems.
机译:尽管进行了大量研究以鉴定卵巢癌的生物标志物,但目前尚无筛查方法可用于该疾病的常规早期检测。尽管在早期阶段可高度治疗,但疾病进展早期缺乏症状通常会导致癌症在被诊断之前扩散到其他组织,从而大大降低了生存率。 CA-125是目前用于检测卵巢癌的最常见的生物标志物。但是,单独测量时其诊断可靠性差,因此必须使用多重生物标志物筛选来进行准确的早期诊断。为此目的,已鉴定出许多蛋白质生物标记物,以及称为microRNA的小型非编码寡核苷酸。用于筛选多种分析物类型组合的新测定法要求能够检测任何类别的靶标,包括蛋白质和核酸。这项工作描述了开发用于早期检测卵巢癌的无标记多重测定法的进展。仪器方法利用微小的微谐振器,这种微谐振器利用了被称为耳语画廊模式(WGM)谐振的现象。该方法基于圆形电介质通过连续全内反射存储光的能力,其中存储的波长取决于周围的折射率。通过将捕获剂附着到传感器表面,结合事件会改变局部RI并改变共振波长,可用于量化分析物结合。为了结合两种传统WGM技术的有利属性,在第2章中,我们介绍了一种新的生物传感方法,该方法将微球体WGM谐振器与荧光成像相结合,从而创建了灵活的多元生物传感平台。结果表明,与其他WGM方法相比,使用这种成像技术可以大大提高多路复用能力,从而可以在单个测定中检测多个目标。通过检测与卵巢癌发病机理相关的两种生物标记物CA-125和肿瘤坏死因子-α,证明了使用这种方法进行生物标记物测定的可行性。为了将WGM成像技术推进临床应用,我们在第3章中表明通过检测掺入血清样品中的CA-125,非特异性结合不受限制。通过测量从健康供体和被诊断患有卵巢癌的患者采集的血清中的CA-125水平,可以说明这种方法的最终临床实用性。虽然耳语回廊检测在生物标志物测量中非常有效,但实际上检测区域覆盖的区域很小区域。像在所有无标记测定中一样,非特异性结合可能成为WGM检测的问题,并且希望所有固定的抗体都具有活性。因此,至关重要的是,所有捕获抗体都必须以适当的方向固定,以实现有效的分析物结合。因此,为了使传感器性能最大化,需要能够在单分子水平上表征抗体取向的新技术。因此,引入了一种新的测量单抗体方向的方法,并已在使用模型脂质膜的功能齐全的测试系统中进行了验证。;已证明,偏振全内反射荧光显微镜(PTIRF-M)能够直接确定三维单分子的取向。使用DPPC的Langmuir-Blodgett单层膜,我们在第5章中显示了这些方向可用于在分子水平上追踪膜结构。我们利用它来发现由Langmuir-Blodgett沉积形成的脂质单层与由囊泡融合形成的支持脂质双层之间的特征“等效表面压力”。通过比较每个系统中固醇添加剂的冷凝作用,进一步探索了单分子方法。这些测量结果表明,取向响应于缩合固醇的添加,进一步支持了该技术可以在分子水平上追踪结构变化的观点。由于未来的单分子研究将用于确定在动态,流体环境中的抗体方向,因此探索这种方法在时间上的分辨能力非常重要。在第六章中,我们证明了单分子方向的变化可以在约1s的时间分辨率下捕获。通过通过相对湿度的变化来增加模型膜系统的水合作用水平,我们表明结构和动态变化都发生在分子水平的膜内。另外,观察到该技术能够实时测量三维取向变化。未来的目标包括采用这种方法来原位探测抗体在基质上的定向,因此这些研究是了解如何在流体系统中应用该技术的重要步骤。

著录项

  • 作者

    Huckabay, Heath A.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Chemistry General.;Chemistry Analytical.;Health Sciences Oncology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号