首页> 外文学位 >High temperature nitrogen oxides sensing enabled by indium oxide thin films.
【24h】

High temperature nitrogen oxides sensing enabled by indium oxide thin films.

机译:氧化铟薄膜可实现高温氮氧化物传感。

获取原文
获取原文并翻译 | 示例

摘要

Generation of power using fossil fuel combustion invariably results in formation of undesirable gas species (NOx, SOx, CO, CO2, etc.) at high-temperatures which are harmful to the environment. Thus, there is a continual need to develop sensitive, responsive, stable, selective, robust and low-cost sensor systems and sensor materials for combustion monitoring. This work investigates the viability of microfabricated NO x sensors based on sputtered indium oxide (In2O3) utilizing microhotplate structures. The material becomes resistive when exposed to oxidizing gases like NOx, with its conductivity dependent upon the temperature, partial pressure of the test gas and morphological structure. We believe this device would help increase efficiency and decrease emissions through improved combustion process control, leading to a comparably economic and responsive sensor.;In this work, more than 600 sensors were fabricated and tested, including RF and pulsed-DC sputtered films. About 50 unique sensor conditions were characterized and related to the gas sensor response. The sensor conditions included deposition parameters (power, pressure, time, etc.) and postdeposition processes (anneals, promoter layers, etc.). In2O3 thin films were RF sputter deposited on microhotplate structures with different thickness (40 to 300 nm) in pure Ar. Additionally, a combination of reactive and RF sputtering of In2O3 material was-deposited in Ar and O2 (10% and 25%) mixture. In2O3 films without promoter layers and with gold or TiOx promoter layers (∼ 3 nm) were investigated for NOx sensing. Selectivity, stability and repeatability of indium oxide (In2O3) thin film sensor to detect NO x (25 ppm) in presence of other exhaust gas pollutants including H 2, NH3 and CO2 at high operating temperatures (greater than 350°C) was investigated in N2 carrier gas. In 2O3 films (150nm thick) deposited in Ar and O2 (25% O2) presented the highest response (S ∼ 50) to 25 ppm NOx at 500°C when compared to films (S ∼ 5) deposited in Ar. Au and TiOx promoter layers increased the sensor response and generated faster time constants (tau1rise ∼ 10 seconds) when compared to sensors without promoter layers (tau1rise ∼ 60 seconds).;Design geometry of electrodes in microhotplate structures played an important role with In2O3 films contacted by a single pair of electrodes having 5x higher sensor response compared to films contacted by integrated electrodes using 5 or 11 pairs. The effect was unique to conductive In2O3 films among other metal-oxide materials tested, NiO and TiWOx, suggesting interaction between In2O 3-electrode interface influences the NOx sensitivity. In 2O3 thin films (∼ 125 nm) sputter deposited using pulsed-DC presented high sensitivity to NOx for pulsed-DC In2O 3 films with (222) preferred texture, indicating crystallite orientation plays a significant role in the NOx sensor response. In addition, In2O3 layers demonstrate conduction properties for operating temperatures between 400 to 650°C depend upon the grain size and film deposition conditions for both RF and pulsed-DC films.
机译:使用化石燃料燃烧发电会始终导致在有害于环境的高温下形成不良气体(NOx,SOx,CO,CO2等)。因此,持续需要开发用于燃烧监测的灵敏,响应迅速,稳定,选择性,坚固且低成本的传感器系统和传感器材料。这项工作研究了利用微热板结构基于溅射氧化铟(In2O3)的微型NOx传感器的可行性。该材料在暴露于氧化性气体(如NOx)时会变成电阻性,其电导率取决于温度,测试气体的分压和形态结构。我们相信该设备将通过改进燃烧过程控制来帮助提高效率并减少排放,从而带来相对经济且响应迅速的传感器。在这项工作中,制造并测试了600多个传感器,包括RF和脉冲DC溅射膜。表征了约50种独特的传感器条件,并与气体传感器的响应有关。传感器条件包括沉积参数(功率,压力,时间等)和后沉积过程(退火,促进剂层等)。将In2O3薄膜RF溅射沉积在微热板结构上,该微热板结构具有不同的纯Ar厚度(40至300 nm)。另外,在Ar和O2(10%和25%)的混合物中沉积In2O3材料的反应溅射和RF溅射的组合。研究了不具有促进剂层,具有金或TiOx促进剂层(约3 nm)的In2O3膜用于NOx感测。研究了氧化铟(In2O3)薄膜传感器在高温(大于350°C)下在存在其他废气污染物(包括H 2,NH3和CO2)时检测NO x(25 ppm)的选择性,稳定性和可重复性。 N2载气。与沉积在Ar中的膜(S〜5)相比,在Ar和O2(25%O2)中沉积的2O3膜(25%O2)在500°C时对25 ppm NOx表现出最高的响应(S〜50)。与没有促进剂层的传感器(τ60〜60秒)相比,Au和TiOx促进剂层增加了传感器的响应并产生了更快的时间常数(τ10〜10秒)。;微热板结构中电极的设计几何形状在接触In2O 3膜时起着重要作用与使用5或11对集成电极接触的薄膜相比,单对电极具有5倍以上的传感器响应。在其他测试的金属氧化物材料NiO和TiWOx中,这种效果是导电In2O3薄膜所独有的,表明In2O 3电极界面之间的相互作用会影响NOx的敏感性。在使用脉冲DC溅射的2O3薄膜(约125 nm)中,对于具有(222)较好织构的脉冲DC In2O 3膜,其对NOx的敏感性很高,表明微晶取向在NOx传感器响应中起着重要作用。此外,In2O3层在400至650°C的工作温度下表现出导电性能,这取决于RF和脉冲DC膜的晶粒尺寸和膜沉积条件。

著录项

  • 作者

    Kannan, Srinivasan.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号