首页> 外文学位 >Structural and Electrochemical Characterization of Sodium-Ion Insertion Electrodes.
【24h】

Structural and Electrochemical Characterization of Sodium-Ion Insertion Electrodes.

机译:钠离子插入电极的结构和电化学表征。

获取原文
获取原文并翻译 | 示例

摘要

With the alarming rate of fossil fuel consumption in the world, electrochemical energy storage technologies that are low in cost and high in performance will need to be developed. Na-ion batteries are now being considered an ideal alternative to lithium-ion batteries given that their intercalation properties are similar, the cost of sodium is low, and there are infinite reserves of sodium. However, since sodium is heavier and less electropositive than lithium, there is a gravimetric energy density penalty. Nonetheless, the work presented in this dissertation offers the prospect of safer, greener, and low cost rechargeable batteries. The first system we studied was sodium titanate (Na2Ti 3O7), where we modified the nanomorphologies of this compound, first into nanosheets and nanotubes, then optimized its electrochemical properties in the form of nanoplatelets for use as a negative electrode. It is noteworthy that a combination of nanoplatelets and nanosheets offered the best combination of high energy and high power densities. The next class of materials we studied were phosphates, as these materials exhibit higher operating voltages due to the inductive effect of the phosphate anion. However, slow kinetics plague phosphate-based compounds so nanostructuring and conductive coatings are required. For the second system, NaTi2(PO4)3, size-reduction and the use of reduced graphene oxide was investigated to solve this problem of slow kinetics. Similarly, for the third system, Na2FePO 4F, we utilized a novel (polyol) synthesis to prepare nanoparticles and also used reduced graphene oxide to promote high rate-capability of this material. The last part of the dissertation involves a pseudocapacitive energy storage system. This energy storage mechanism leads to both high energy and high power densities by suitably modifying the physical properties of the material of interest. For this work, we supported pseudocapacitive charge-storage of MoS2 nanoparticles using in-situ X-ray diffraction.
机译:随着世界上化石燃料消耗的惊人速度,将需要开发低成本和高性能的电化学储能技术。钠离子电池由于其嵌入特性相似,钠成本低且钠储量无限,现在被认为是锂离子电池的理想替代品。但是,由于钠比锂重且正电性较弱,因此存在重量重的能量密度损失。尽管如此,本文提出的工作仍提供了更安全,更环保,成本更低的可充电电池的前景。我们研究的第一个系统是钛酸钠(Na2Ti 3O7),在该系统中,我们将该化合物的纳米形态进行了修饰,首先修饰为纳米片和纳米管,然后以纳米片的形式优化了其电化学性能,用作负极。值得注意的是,纳米片和纳米片的组合提供了高能量和高功率密度的最佳组合。我们研究的下一类材料是磷酸盐,因为这些材料由于磷酸根阴离子的感应作用而具有较高的工作电压。但是,缓慢的动力学困扰着磷酸盐基化合物,因此需要纳米结构和导电涂层。对于第二种系统,NaTi2(PO4)3,减小尺寸和使用还原的氧化石墨烯进行了研究,以解决该慢动力学问题。类似地,对于第三个系统Na2FePO 4F,我们利用一种新颖的(多元醇)合成方法来制备纳米颗粒,并且还使用了还原的氧化石墨烯来促进这种材料的高倍率性能。本文的最后一部分涉及伪电容储能系统。通过适当地改变目标材料的物理性质,这种能量存储机制导致了高能量密度和高功率密度。对于这项工作,我们支持使用原位X射线衍射对MoS2纳米颗粒进行伪电容电荷存储。

著录项

  • 作者

    Ko, Jesse Sun-Woo.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Materials science.;Nanoscience.;Energy.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号