首页> 外文学位 >Engineering Escherichia coli for molecularly defined electron transfer to metal oxides and electrodes.
【24h】

Engineering Escherichia coli for molecularly defined electron transfer to metal oxides and electrodes.

机译:工程大肠埃希氏菌,可通过分子确定的方式将电子转移至金属氧化物和电极。

获取原文
获取原文并翻译 | 示例

摘要

Both organisms and human-made technological devices use the flow of charge as the basic currency of information and energy. The soft materials properties and waxy cell membranes generally do not interface electrically with solid materials. Creating an interface that permits electrical communication between living and non-living systems would enable new opportunities in fields such as biosensing, bioenergy conversion, and biocomputing. Thus my dissertation focuses on creating a blueprint for the bidirectional flow of electrons between living and non-living systems that is transferrable to a multitude of cell lines. I take a biologically-focused approach to connect the living and non-living worlds: use synthetic biology to introduce a new electron transfer pathway into E. coli. This strategy takes advantage of the respiratory capability of the dissimilatory metal reducing bacterium Shewanella oneidensis MR-1. Shewanella uses a network of multiheme cytochromes that are able to transfer charge across the inner and outer membranes of the bacteria via the heme moiety in the cytochromes. This pathway enables Shewanella to route electrons along a well-defined path from the cell interior to an extracellular inorganic material acting as a terminal electron acceptor during anaerobic respiration. By genetically engineering the cell to build and maintain the bioelectronic connections, the cells can autonomously assemble and repair these connections. This work describes the first time the outer membrane spanning and double membrane spanning Shewanella electron transfer pathway was heterologously expressed in Escherichia coli. Additionally, these engineered E. coli strains are shown to reduce soluble iron, solid iron oxide, and anodes. This work not only serves as a landmark for the expression of complex membrane associated pathways, but it also demonstrates proof of concept that this pathway could be transferrable to other cell lines. This dissertation represents the first step towards engineering bidirectional communications with electrodes, and it opens up an array of opportunities for studying the biochemical and enzymatic properties of these unique proteins as well as the potential for novel hybrid technologies.
机译:生物体和人造技术设备都使用电荷流作为信息和能量的基本货币。柔软的材料特性和蜡质细胞膜通常不与固体材料电连接。创建一个允许生物系统与非生物系统之间进行电气通信的接口,将在诸如生物传感,生物能源转换和生物计算等领域中创造新的机遇。因此,我的论文的重点是为活体系统和非活体系统之间的双向电子流动创建一个蓝图,该蓝图可以转移到众多细胞系中。我采用以生物学为重点的方法来连接生物世界和非生物世界:使用合成生物学将新的电子转移途径引入大肠杆菌。该策略利用了异化金属还原细菌Shewanella oneidensis MR-1的呼吸能力。希瓦氏菌使用多血红素细胞色素网络,该网络能够通过细胞色素中的血红素部分跨细菌的内膜和外膜转移电荷。该途径使希瓦氏菌能够沿着明确的路径将电子从细胞内部路由到厌氧呼吸过程中充当末端电子受体的细胞外无机材料。通过基因工程改造细胞以建立和维持生物电子连接,细胞可以自主组装和修复这些连接。这项工作描述了第一次外膜跨越和双膜跨越希瓦氏菌电子转移途径是在大肠杆菌中异源表达的。另外,这些工程大肠杆菌菌株显示出还原可溶性铁,固体氧化铁和阳极的能力。这项工作不仅作为表达复杂膜相关途径的标志,而且还证明了该途径可以转移到其他细胞系的概念证明。这篇论文代表了工程化与电极双向通信的第一步,它为研究这些独特蛋白质的生化和酶学性质以及新型杂交技术的潜力提供了一系列机会。

著录项

  • 作者

    Jensen, Heather Marie.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号