首页> 外文学位 >Catalytic dehydroaromatization of methane over zeolite-supported molybdenum nanoparticles.
【24h】

Catalytic dehydroaromatization of methane over zeolite-supported molybdenum nanoparticles.

机译:沸石负载的钼纳米颗粒上甲烷的催化脱氢芳构化。

获取原文
获取原文并翻译 | 示例

摘要

140 billion m3 of natural gas, which is mostly composed of methane, are wastefully flared or vented worldwide annually because there are no efficient technologies for methane conversion. Direct methane conversion into liquid aromatic hydrocarbons over catalysts with molybdenum nanostructures supported on shape selective zeolites is a promising new chemistry that can solve this problem and dramatically improve natural gas utilization. In this work, a combination of spectroscopic measurements, transient reaction kinetic studies and quantum chemical calculations based on density functional theory determines the identity and anchoring sites of the initial molybdenum structures in such catalysts as isolated Mo(=O)2 species on double Al-atom sites and Mo(=O)2OH species on single Al-atom sites in the zeolite framework. During the reaction with methane, the initial isolated Mo oxide species agglomerate and convert into Mo oxycarbide or carbide nanoparticles. This work determines that this process is reversible and that the initial isolated Mo oxide species are restored by a treatment with gas-phase oxygen. These findings will be helpful in extending catalyst lifetime and in optimization of catalyst formulations and reaction conditions. The developed methodology of combining vibrational spectroscopies with quantum chemical calculations for molecular-level understanding of reaction mechanisms on catalytic surfaces was extended to characterization of hydrocarbon adsorption and reactivity of platinum-tin alloy catalysts. A new preferential catalytic mechanism for the transformation of acetylene (CH-CH) to vinylidene (C-CH2) was identified. Unlike the direct H shift along the C-C bond in organometallics, this mechanism has a geometric site requirement of three adjacent Pt atoms in a threefold arrangement. The same geometric site requirement is identified for C-H bond cleavage. In the absence of three-fold Pt sites, the reaction mechanism changes, and reactions of H transfer and C-H bond cleavage are suppressed. As synthesis methods for custom-tailored alloy surfaces are being rapidly developed to control both the composition and geometric arrangements of elements, this information on the geometric requirements for hydrocarbon reactivity is critical for realizing the full potential of rational design for new bimetallic catalysts.
机译:由于没有有效的甲烷转化技术,全世界每年有1400亿立方米的天然气主要由甲烷组成,其燃烧或燃烧后的废气排放量很大。在形状选择沸石上负载的具有钼纳米结构的催化剂上,甲烷直接转化为液态芳烃是一种很有前途的新化学方法,可以解决此问题并显着提高天然气利用率。在这项工作中,基于密度泛函理论的光谱测量,瞬态反应动力学研究和量子化学计算相结合,确定了催化剂中初始钼结构的身份和锚定位,例如双Al-上分离出的Mo(= O)2物种。沸石骨架中单个Al原子位点上的原子位点和Mo(= O)2OH物种。在与甲烷反应期间,最初分离出的Mo氧化物团聚并转化为Mo碳氧化物或碳化物纳米颗粒。这项工作确定了该过程是可逆的,并且通过气相氧处理可以还原出最初的孤立Mo氧化物。这些发现将有助于延长催化剂寿命以及优化催化剂配方和反应条件。将振动光谱学与量子化学计算相结合以从分子水平上理解催化表面反应机理的已开发方法已扩展到表征碳氢化合物吸附和铂锡合金催化剂的反应性。鉴定了乙炔(CH-CH)转化为亚乙烯基(C-CH2)的新的优先催化机制。与有机金属中沿C-C键的直接H移位不同,此机理的几何位置要求是三重排列的三个相邻Pt原子。对于C-H键断裂,确定了相同的几何位点要求。在不存在三重Pt位点的情况下,反应机理改变,并且抑制了H转移和C-H键裂解的反应。随着用于定制合金表面的合成方法正在迅速发展,以控制元素的组成和几何排列,有关烃反应性的几何要求的信息对于实现新型双金属催化剂的合理设计的全部潜力至关重要。

著录项

  • 作者

    Gao, Jie.;

  • 作者单位

    Stevens Institute of Technology.;

  • 授予单位 Stevens Institute of Technology.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号