首页> 外文学位 >Breaking Quantum Limits with Collective Cavity-QED: Generation of Spin Squeezed States via Quantum Non-Demolition Measurements.
【24h】

Breaking Quantum Limits with Collective Cavity-QED: Generation of Spin Squeezed States via Quantum Non-Demolition Measurements.

机译:集体腔QED突破了量子极限:通过量子非爆破测量产生自旋压缩态。

获取原文
获取原文并翻译 | 示例

摘要

Large ensembles of uncorrelated atoms are extensively used as precise sensors of time, rotation, and gravity, and for tests of fundamental physics. The quantum nature of the sensors imposes a limit on their ultimate precision. Larger ensembles of N atoms can be used to average the quantum noise as 1/ N , a scaling known as the standard quantum limit. However, the ensemble size may be limited by technical constraints and/or atom-atom collisions---a fundamental distinction from photon-based sensors. Learning to prepare entangled states of large ensembles with noise properties below the standard quantum limit will be key to extending both the precision and/or bandwidth of atomic sensors. More broadly, the generation and application of entanglement to solve problems is a core goal of quantum information science being pursued in both atomic and solid state systems.;In this thesis, we utilize the tools of cavity-QED to prepare entangled spin-squeezed states with 3.4(6) dB improvement in spectroscopic sensitivity over the standard quantum limit. The collective atomic spin is composed of the two-level clock states of 87Rb confined in a medium finesse F = 710 optical cavity. We employ cavity-aided quantum non-demolition measurements of the vacuum Rabi splitting to measure and subtract out the quantum projection noise of the collective spin state, preparing states with collective atomic spin projection noise 4.9(6) dB below the projection noise level. The conditionally reduced spin noise combined with the measured 1.5(3) dB reduction in the mean spin length implies a net 3.4(6) dB spectroscopic enhancement or conditional squeezing as defined by the Wineland criterion. Our method does not require single particle addressability and is applied to a spectroscopically large ensemble of N = 7 x 10 5 atoms using two collective population measurements, with the whole squeezing operation taking ~150 micros. The gain in sensitivity is spectroscopically equivalent to the enhancement obtained had we created >105 pairs of maximally entangled qubits, demonstrating the power of a top-down approach for entangling large ensembles. The nondemolition probing of atomic populations via the vacuum Rabi splitting is also of broad interest for non-destructively reading out a wide variety of both atomic and solid state qubits.
机译:不相关原子的大型集成体广泛用作时间,旋转和重力的精确传感器,并用于基础物理测试。传感器的量子性质对其最终精度施加了限制。可以使用更大数量的N原子集合来将量子噪声平均化为1 / N,该缩放比例称为标准量子极限。但是,整体大小可能会受到技术限制和/或原子-原子碰撞的限制-与基于光子的传感器的根本区别。学习准备噪声特性低于标准量子极限的大型整体的纠缠态将是扩展原子传感器的精度和/或带宽的关键。从更广泛的意义上讲,纠缠的产生和解决问题的方法是原子和固态系统中追求的量子信息科学的核心目标。本文利用腔QED的工具来制备纠缠自旋压缩态与标准量子极限相比,光谱灵敏度提高了3.4(6)dB。集体原子自旋由局限于中等精细度F = 710光学腔的87Rb的二级时钟状态组成。我们使用真空Rabi分裂的腔辅助量子非爆破测量来测量和减去集体自旋态的量子投影噪声,以低于集体噪声自旋噪声4.9(6)dB的状态制备状态。有条件降低的自旋噪声与测得的平均自旋长度的1.5(3)dB降低相结合,就意味着出现了3.4(6)dB的净光谱增强或由Wineland准则定义的有条件压缩。我们的方法不需要单个粒子可寻址性,并且使用两次集体填充测量将其应用于光谱大的N = 7 x 10 5原子的集成体,整个压缩操作大约需要150微米。从光谱上讲,灵敏度的提高等同于我们创建大于105对最大纠缠量子位所获得的增强,这证明了自上而下方法纠缠大型合奏的强大功能。对于通过非破坏性地读取各种各样的原子和固态量子位,通过真空拉比分裂进行的原子种群的非爆破探测也引起了广泛的兴趣。

著录项

  • 作者

    Chen, Zilong.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Physics Quantum.;Physics Atomic.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号