首页> 外文学位 >A Superradiant Laser and Spin Squeezed States: Collective Phenomena in a Rubidium Cavity QED System for Enhancing Precision Measurements.
【24h】

A Superradiant Laser and Spin Squeezed States: Collective Phenomena in a Rubidium Cavity QED System for Enhancing Precision Measurements.

机译:超辐射激光和自旋压缩态:a腔QED系统中的集体现象,可提高精确度。

获取原文
获取原文并翻译 | 示例

摘要

By allowing a large ensemble of laser cooled and trapped 87Rb atoms to interact collectively with an optical cavity, I have explored two phenomena that may prove useful for enhancing precision measurements: superradiant lasing and spin squeezing.;Superradiant lasers have been proposed as future ultrastable optical frequency references, with predicted linewidths < 1 millihertz. These lasers operate in an unusual regime of laser physics where collective emission from an atomic ensemble maps the quantum phase stored in the atoms onto the optical cavity field. I will give an overview of my experimental work using a cold-atom, superradiant Raman laser as a model system to confirm a number of the key predictions concerning superradiant lasing, including the possibility of coherent emission with < 1 intracavity photon on average and greatly reduced sensitivity to cavity frequency noise.;I also present work using cavity-aided, coherence-preserving measurements of the atomic state population to create entanglement between atoms. The entanglement enables more precise estimation of the quantum phase at the heart of nearly all precision measurements and sensors utilizing quantum objects. By utilizing a cycling transition for the quantum non-demolition probe, we have reduced by several orders of magnitude the measurement induced back-action caused by spontaneous Raman transitions. We directly observe, with no background subtraction, a spin squeezed state with sensitivity to measuring a quantum phase enhanced 10.5 times in variance (i.e. 10.2 dB) beyond the standard quantum limit for an unentangled state. This experimental breakthrough demonstrates that quantum-aided sensing techniques can realize large enough enhancements to have a substantial impact on precision measurements and may aid advances in technology as well as searches for new physics.
机译:通过使大量激光冷却和俘获的87Rb原子团与光学腔共同相互作用,我探索了两种现象可能被证明对提高精确度测量有用:超辐射激光和自旋压缩。超辐射激光已被提出作为未来的超稳定光学。频率参考,预测线宽<1毫赫兹。这些激光器在不寻常的激光物理学领域中工作,其中原子团的集体发射将存储在原子中的量子相映射到光腔场上。我将概述使用冷原子超辐射拉曼激光作为模型系统的实验工作,以确认有关超辐射激光的许多关键预测,包括平均腔内光子小于1的相干发射的可能性,并大大降低了相干发射的可能性。对腔体频率噪声的敏感性。我还介绍了使用腔体辅助,保持相干性的原子态总体测量来创建原子之间纠缠的工作。纠缠能够在几乎所有使用量子对象的精确测量和传感器的心脏处更精确地估计量子相位。通过为量子非爆破探针使用循环跃迁,我们将自发拉曼跃迁引起的测量诱导的反作用降低了几个数量级。我们直接观察到了自旋压缩状态,没有背景扣除,该方法对测量量子相位的灵敏度提高了10.5倍(即10.2 dB),方差超过了非纠缠态的标准量子极限。这一实验性突破表明,量子辅助传感技术可以实现足够大的增强,从而对精度测量产生重大影响,并且可以帮助技术进步以及寻找新的物理学。

著录项

  • 作者

    Bohnet, Justin G.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Physics Atomic.;Physics General.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 258 p.
  • 总页数 258
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号