首页> 外文学位 >Robust-adaptive active vibration control of alloy and flexible matrix composite rotorcraft drivelines via magnetic bearings: Theory and experiment .
【24h】

Robust-adaptive active vibration control of alloy and flexible matrix composite rotorcraft drivelines via magnetic bearings: Theory and experiment .

机译:磁轴承对合金和柔性基复合材料旋翼飞机传动系统的鲁棒自适应主动振动控制:理论和实验。

获取原文
获取原文并翻译 | 示例

摘要

This thesis explores the use of Active Magnetic Bearing (AMB) technology and newly emerging Flexible Matrix Composite (FMC) materials to advance the state-of-the-art of rotorcraft and other high performance driveline systems. Specifically, two actively controlled tailrotor driveline configurations are explored. The first driveline configuration (Configuration I) consists of a multi-segment alloy driveline connected by Non-Constant-Velocity (NCV) flexible couplings and mounted on non-contact AMB devices. The second configuration (Configuration II) consists of a single piece, rigidly coupled, FMC shaft supported by AMBs. For each driveline configuration, a novel hybrid robust-adaptive vibration control strategy is theoretically developed and experimentally validated based on the specific driveline characteristics and uncertainties. In the case of Configuration I, the control strategy is based on a hybrid design consisting of a PID feedback controller augmented with a slowly adapting, Multi-Harmonic Adaptive Vibration Control (MHAVC) input. Here, the control is developed to ensure robustness with respect to the driveline operating conditions e.g. driveline misalignment, load-torque, shaft speed and shaft imbalance. The analysis shows that the hybrid PID/MHAVC control strategy achieves multi-harmonic suppression of the imbalance, misalignment and load-torque induced driveline vibration over a range of operating conditions. Furthermore, the control law developed for Configuration II is based on a hybrid robust Hinfinity feedback/Synchronous Adaptive Vibration Control (SAVC) strategy. Here, the effects of temperature dependent FMC material properties, rotating-frame damping and shaft imbalance are considered in the control design. The analysis shows that the hybrid Hinfinity/SAVC control strategy guarantees stability, convergence and imbalance vibration suppression under the conditions of bounded temperature deviations and unknown imbalance. Finally, the robustness and vibration suppression performance of both new AMB driveline configurations is experimentally confirmed using a frequency-scaled AMB driveline testrig specifically developed for this research.
机译:本文探讨了使用主动电磁轴承(AMB)技术和新兴的柔性基复合材料(FMC)材料来推进旋翼飞机和其他高性能动力传动系统的最新技术。具体来说,探讨了两种主动控制的尾桨传动系统配置。第一种传动系统配置(配置I)由通过非恒定速度(NCV)挠性联轴节连接并安装在非接触式AMB设备上的多段合金传动系统组成。第二种配置(配置II)由由AMB支撑的单件刚性连接的FMC轴组成。对于每种动力传动系统配置,基于特定的动力传动系统特性和不确定性,理论上都会开发出一种新型的混合鲁棒自适应振动控制策略,并通过实验进行了验证。在配置I的情况下,控制策略基于混合设计,该设计由PID反馈控制器组成,该控制器增加了缓慢适应的多谐波自适应振动控制(MHAVC)输入。在此,开发控制装置以确保相对于传动系运行条件的坚固性。动力传动系统不对中,负载扭矩,轴转速和轴不平衡。分析表明,PID / MHAVC混合控制策略可在一系列运行条件下实现对不平衡,失准和负载转矩引起的传动系振动的多谐波抑制。此外,为配置II开发的控制法则基于混合鲁棒的Hinfinity反馈/同步自适应振动控制(SAVC)策略。在此,在控制设计中考虑了温度依赖的FMC材料特性,旋转机架阻尼和轴不平衡的影响。分析表明,Hinfinity / SAVC混合控制策略可确保在有限的温度偏差和未知失衡条件下的稳定性,收敛性和失衡振动抑制。最后,使用专为本次研究开发的频率缩放AMB传动系统试验台,通过实验确定了两种新AMB传动系统配置的鲁棒性和抑振性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号