首页> 外文学位 >Wetting and frosting/defrosting study on microgrooved surfaces.
【24h】

Wetting and frosting/defrosting study on microgrooved surfaces.

机译:微沟槽表面的润湿和结霜/除霜研究。

获取原文
获取原文并翻译 | 示例

摘要

Surfaces with parallel microgrooves have been studied widely, especially for their potential to promote water drainage. There is increasing interest in understanding and manipulating the effects of surface wettability on the condensation and frosting processes, to minimize condensate retention and frosting penalties, and to promote effective defrosting. In the present study, the effects of microgrooved surface topography on metal substrates, fabricated without any chemical modification of the surface, on the wettability, condensation, frost formation, and frost melt-water drainage characteristics are studied. Different metal surfaces (brass, copper, and aluminum) are studied because of the technical importance of these metals as working materials in a wide range of heat transfer applications. Through a systematic study of microgrooved brass surfaces, fabricated by a micro end-milling process, the effect of parallel, periodic microgroove geometry on the wettability and droplet mobility is examined experimentally and compared to that of flat surfaces. The substrates have groove depths in the range of 26 to 122 microm, groove widths of 27 to 187 microm, and are about 45 mm x 45 mm in size, with a thickness about 3 mm. Wetting anisotropy, contact angle hysteresis, and drainage behavior of water droplets on the microgrooved surfaces are found to be significantly affected by the variation in groove geometry parameters. Deposited water droplets of a wide range of volumes slide much more readily on microgrooved surfaces than on the flat baseline surfaces, and a significant reduction in the critical sliding angle is obtained for the microgrooved samples. The sliding angles exhibit a significant groove geometry dependence and are found to increase with pillar width and decrease with groove depth. Frost/defrost/refrost experiments are conducted inside a chamber maintaining a controlled environment, under a wide range operating conditions and over multiple frost/refrost cycles. The size, shape, and growth patterns of the condensed water droplets are found to vary considerably between the microgrooved and flat brass surfaces. The groove geometry not only affects the condensation and initial stages of frost formation, rather the effects are profound in long frost cycles as well. The presence of microgrooves is found to alter the frost properties in the frost/refrost cycles and in general, increase the frost thickness and decrease the frost density compared to those on the flat surface. Variations of frost properties with microgroove topography are found to be repeatable and periodic in behavior after the 3rd frost cycle. Microgrooved surfaces manifest a significant improvement in frost melt-water drainage and a reduction in the frost melt water retention of up to 70% over that on the flat baseline surfaces is achieved. These samples consistently exhibit lower frost melt water retention compared to flat surfaces for a broad range operating conditions. Drainage of the frost melt is influenced strongly by the groove geometry and is promoted by an increase in the pillar width, but drainage is relatively insensitive to changes in the groove depth. The relationship between frost structure, frost properties, and frost melt water drainage with groove dimensions is discussed, emphasizing the importance of the morphological features. The consistent improvements in condensate and frost melt water drainage from the microgrooved samples as compared to that on the flat baseline in a wide range operating conditions is very encouraging for reducing the condensate retention and frosting penalty in practical applications. The findings of this study can be used in designing microgrooved metal surfaces with desired wetting and liquid drainage properties for air-conditioning, refrigeration and heat pumping applications. The work might be useful in a broad range of applications where water retention, frosting and defrosting play important roles.
机译:具有平行微槽的表面已得到广泛研究,尤其是其促进排水的潜力。人们越来越了解并控制表面可湿性对冷凝和结霜过程的影响,以最大程度地减少冷凝物的滞留和结霜的危害,并促进有效的除霜。在本研究中,研究了在金属基材上进行微沟槽表面形貌的工艺,该工艺无需对表面进行任何化学修饰即可制造出其对润湿性,结露,结霜和霜融水排水特性的影响。研究了不同的金属表面(黄铜,铜和铝),因为这些金属在广泛的传热应用中作为工作材料具有技术重要性。通过对通过微端面铣削工艺制造的微沟槽黄铜表面的系统研究,实验性地检验了平行,周期性的微沟槽几何形状对润湿性和液滴流动性的影响,并与平坦表面进行了比较。基板的凹槽深度在26至122微米的范围内,凹槽宽度在27至187微米的范围内,并且尺寸为约45mm×45mm,厚度为约3mm。发现沟槽表面几何参数的变化会显着影响微沟槽表面上的润湿各向异性,接触角滞后和水滴的排水性能。与平的基线表面相比,大体积体积的沉积水滴在微沟槽表面上的滑动要容易得多,并且微沟槽样品的临界滑动角大大降低。滑动角显示出明显的凹槽几何形状依赖性,并且发现其随柱宽增加而随凹槽深度减小。霜冻/除霜/再冻霜实验是在一个可控环境下的室内进行的,该试验箱处于较宽的运行条件下,并且经过了多次霜冻/再冻霜循环。发现在微沟槽和扁平黄铜表面之间,冷凝水滴的大小,形状和生长方式有很大不同。沟槽的几何形状不仅影响结霜和霜冻形成的初始阶段,而且在长霜冻周期中影响也很深。发现微沟槽的存在改变了在霜冻/再冻霜循环中的霜冻性质,并且与平坦表面上的霜冻厚度相比,通常增加了霜冻厚度并降低了霜冻密度。发现在第三次霜冻循环后,具有微沟槽形貌的霜冻特性变化是可重复的且周期性的。微槽表面在霜融水的排水方面表现出显着改善,并且与平坦基线表面相比,霜融水的保水率降低了70%。在宽范围的工作条件下,与平坦表面相比,这些样品始终显示出较低的霜融水保留率。霜状熔体的排水受到槽的几何形状的强烈影响,并且由于立柱宽度的增加而促进,但是排水对槽深度的变化相对不敏感。讨论了霜结构,霜性质和霜融水与沟渠尺寸之间的关系,强调了形态特征的重要性。与在宽范围的操作条件下在平坦基线上相比,微沟槽样品的冷凝水和霜融水排水的持续改进非常令人鼓舞,以减少实际应用中的冷凝水滞留和结霜损失。这项研究的结果可用于设计具有理想润湿和排液性能的微槽金属表面,用于空调,制冷和热泵应用。这项工作可能在保水,结霜和除霜起重要作用的广泛应用中有用。

著录项

  • 作者

    Rahman, Md. Ashiqur.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号