首页> 外文学位 >Analyses of Human Adipose Derived Stem Cells and Human Mesenchymal Stem Cells for Functional Tissue Engineering using Biomimetic Physical Stimuli.
【24h】

Analyses of Human Adipose Derived Stem Cells and Human Mesenchymal Stem Cells for Functional Tissue Engineering using Biomimetic Physical Stimuli.

机译:使用仿生物理刺激对人体脂肪干细胞和人间充质干细胞进行功能组织工程的分析。

获取原文
获取原文并翻译 | 示例

摘要

Autologous stem-cell-based tissue engineering holds great potential for treating trauma and pathologies in a patient specific manner. Adult stem cells can be derived from various source tissues such as bone marrow, epidermal tissue, and adipose tissue. Initially, bone-marrow-derived mesenchymal stem cells (MSC) received the most attention for musculoskeletal tissue engineering applications given their direct lineage capability. More recently however, adipose-derived stem cells (ASC) have received increasing interest for tissue engineering applications due to their relative ease of harvest, abundance, and multilineage differentiation potential. To better implement the use of stem and progenitor cells for cell-based therapy and tissue repair, understanding of how these cells are committed to, or differentiate into, a specific cell lineage is needed.;Previous studies have shown the ability of hMSC and hASC to differentiate into bone, fibrous tissue, cartilage, and smooth muscle cells in response to appropriate chemical and/or mechanical stimuli. In this dissertation, the effect of allograft extracellular matrix, soluble inductive factors, and a specific mechanical stimulus (10% uniaxial cyclic tensile strain) on hASC/hMSC osteo- and chondrogenic differentiation and gene expression were examined. In the first study, hASC were seeded into a decellularized human meniscal allograft to determine the effects of inherent soluble cues provided by the extracellular matrix (ECM) on hASC viability, proliferation, differentiation and histology of the hASC-seeded meniscus. In the second study, hASC osteogenic differentiation and response to combined chemical and mechanical stimuli were investigated. Gene expression profiles of proliferating or osteogenically induced hASC in 3D collagen I culture in the presence and absence of 10% uniaxial cyclic tensile strain were examined using microarray analysis. In the final study, hMSC isolated from aged, postmenopausal osteoporotic donors were cultured in three-dimensional (3D) collagen constructs and analyzed for changes in mRNA expression in response to 10% uniaxial cyclic tensile strain in an attempt to identify potential mechanisms underlying the use of appropriate mechanical loading for prevention and treatment of osteoporosis.;The results of the first study show promising initial results of the use of hASC combined with a decellularized meniscal allograft for improved approaches for meniscal allograft transplants. The following studies of hASC and hMSC in response to tensile strain expanded findings from the first study to determine the effects of combined chemical and mechanical stimuli for regeneration of other musculoskeletal tissues in addition to fibrocartilage, with particular emphasis on bone formation. Application of cyclic tensile strain at different magnitudes is a stimulus for fibrous tissue, fibrocartilage and bone formation during normal secondary fracture healing or distraction osteogenesis. Specifically, our lab has previously shown that 10% cyclic tensile enhances osteogenesis of both hASC and hMSC in vitro. However, the molecular mechanisms underlying this potential are not yet known. The research performed in this thesis identified angiogenesis as a potential mechanism in response of hMSC and hASC to 10% cyclic tensile strain. Potential key genes identified to play important roles in hASC and hMSC in response to 10% tensile strain included PDLIM4, an actin binding protein. PDLIM4 knockdown was also shown to increase hMSC osteogenesis via enhanced expression of bone marker genes and alkaline phosphatase activity.
机译:基于自体干细胞的组织工程在以患者特定方式治疗创伤和病理方面具有巨大潜力。成体干细胞可以衍生自各种来源的组织,例如骨髓,表皮组织和脂肪组织。最初,骨髓来源的间充质干细胞(MSC)具有直接的谱系功能,因此在肌肉骨骼组织工程应用中受到了最多的关注。然而,最近,脂肪干细胞(ASC)由于其相对容易收获,丰富和多系分化潜能,在组织工程应用中受到越来越多的关注。为了更好地利用干细胞和祖细胞进行基于细胞的治疗和组织修复,需要了解这些细胞是如何定向或分化为特定细胞谱系的。以前的研究表明,hMSC和hASC的能力响应适当的化学和/或机械刺激而分化为骨骼,纤维组织,软骨和平滑肌细胞。本文研究了同种异体移植细胞外基质,可溶性诱导因子和特定的机械刺激(10%单轴循环拉伸应变)对hASC / hMSC成骨和软骨形成和基因表达的影响。在第一个研究中,将hASC接种到脱细胞的人类半月板同种异体移植物中,以确定细胞外基质(ECM)提供的固有可溶性提示对hASC接种的半月板的hASC活力,增殖,分化和组织学的影响。在第二项研究中,研究了hASC的成骨分化以及对化学和机械刺激联合的反应。使用微阵列分析检查了在存在和不存在10%单轴循环拉伸应变的情况下3D胶原I培养物中增生或成骨诱导的hASC的基因表达谱。在最终研究中,将从老年绝经后骨质疏松供体中分离出的hMSC培养在三维(3D)胶原构建物中,并分析响应10%单轴循环拉伸应变的mRNA表达变化,以试图找出潜在的潜在机制预防和治疗骨质疏松症的适当机械负荷。;第一项研究的结果表明,将hASC与脱细胞半月板同种异体移植结合使用以改善半月板同种异体移植方法具有令人鼓舞的初步结果。以下针对hASC和hMSC应对拉伸应变的研究扩展了第一项研究的发现,即确定化学和机械刺激相结合对除纤维软骨以外的其他肌肉骨骼组织再生的影响,尤其着重于骨形成。在正常的继发性骨折愈合或牵张成骨过程中,施加不同程度的周期性拉伸应变是对纤维组织,纤维软骨和骨形成的刺激。具体而言,我们的实验室先前已显示10%的循环拉伸强度可在体外增强hASC和hMSC的成骨作用。然而,潜在的分子机制尚不清楚。本文的研究确定了血管生成是hMSC和hASC对10%循环拉伸应变的响应的潜在机制。经鉴定在10%拉伸应变中在hASC和hMSC中起重要作用的潜在关键基因包括肌动蛋白结合蛋白PDLIM4。还显示PDLIM4敲低可通过增强骨标志物基因的表达和碱性磷酸酶活性来增加hMSC成骨作用。

著录项

  • 作者

    Charoenpanich, Adisri.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号