首页> 外文学位 >Impairment of Fast Axonal Transport in Alzheimer's Disease.
【24h】

Impairment of Fast Axonal Transport in Alzheimer's Disease.

机译:快速轴突运输在阿尔茨海默氏病中的损害。

获取原文
获取原文并翻译 | 示例

摘要

Alzheimer’s disease (AD) is the most common adult-onset neurodegenerative disease, and it affects over 5 million Americans. AD is also the most common cause of dementia, the loss of cognitive functions, among the elderly. Pathological characteristics of AD include the presence of extracellular amyloid plaques and intracellular neurofibrillary tangles, and significant loss of cholinergic neurons in hippocampus and basal forebrain. The cause of AD is largely unknown except for the genetically inherited familial form of AD which mutations in proteins such as Presenilin 1 (PS1), PS2, and amyloid precursor protein (APP) have been identified. Like other neurodegenerative diseases, only neurons are affected in AD although pathological proteins are ubiquitously expressed in many different types of tissues. Why neurons degenerate while other cell types remain normal is not fully elucidated.;Neurons are different from other cell types in that they have highly polarized structure with an axon which can be several thousand times the length of the cell body. There is little to no protein synthesis in the axon which means all the materials required for proper functioning of axon and its terminals must be transported from the site of their synthesis, the cell body in anterograde transport machinery. Also, signaling molecules and materials to be degraded are transported retrogradely in the axon. Cytoskeletal and soluble proteins are transported in the slow component of axonal transport, and fast axonal transport (FAT) transports membrane bounded organelles (MBOs). MBOs are transported in the anterograde direction by kinesins and in the retrograde direction by dyneins. Neurons’ high dependence on axonal transport for their functions and survival makes them more vulnerable to any insult that disrupts transport than other types of cells.;Recently, the role of impaired FAT has been implicated in the pathogenesis of a number of neurodegenerative diseases, including AD. Moreover, a dominant negative mutation of anterograde motor Kif5A is linked to Hereditary Spastic Paraplegia (HSP) Type 10, a progressive neurodegenerative disease that affects lower motor neurons (Reid et al, 2006). However, mutations in motor proteins themselves are rare, and no such mutation is linked to AD. An alternative explanation is that pathological proteins affect FAT’s regulatory processes. FAT is regulated by phosphorylation of motor proteins. Aberrant kinase and phosphatase activities can lead to untimely release of cargoes or abnormal transport velocities which will result in dying back neurodegenration.;In AD, hyperphosphorylation of tau protein provides a clear evidence for dysregulation of phosphotransferase activities. One of the kinases shown to have altered activity in AD is CK2, a pleiotropic Serine/Threonine kinase (Iimoto et al., 1990). Perfusion of isolated squid axoplasm with active CK2 inhibits both directions of FAT (Morfini et al., 2001). However molecular mechanism of this inhibition and its role in AD has not been previously studied. In this thesis, a detailed analysis of molecular events caused by elevated CK2 activity leading to impairment of FAT and their implications in the pathogenesis of AD are described. First, FAT velocity experiments with perfusion of the oligomeric Aβ42 (oAβ42) which is the major component of amyloid plaques, a pathological hallmark of AD, revealed oAβ42 directly activates CK2 and impairs both directions of FAT. Second, molecular mechanisms of FAT disruption by CK2 were studied using biochemical approach. Microtubule (MT) binding assays with primary mouse cortical neurons with CK2 activator revealed kinesin’s binding to MT is reduced upon activation of mouse endogenous CK2. A novel mechanism of alteration in dynein-based retrograde transport by CK2 activation was also identified. Iodixanol vesicle flotation assays failed to detect changes in motor protein binding to MBOs upon CK2 activation, but further study is needed to determine subpopulation specific effect of CK2.;Studies using primary cortical neurons of a mouse model of AD (PS1-ki M146V) demonstrated that both kinesin and dynein binding to MT are reduced in this transgenic mouse line while binding to the MBOs were not affected. Previous studies suggest kinesin light chains are more phosphorylated at CK2 consensus site although alteration in CK2 activity was not detected in permeabilized cortical neuron culture from this animal in current work. Very aggressive mouse model of AD (5xFAD) exhibited brain region specific activation of CK2. These results lead us to present a novel mechanism of the pathogenesis of AD which increased production of Aβ42 leads to altered activation of CK2 which impairs FAT causing neurons in specific brain region degenerate in dying back fashion.;To further understand late-onset nature of AD, additional studies revealed that expression levels of kinesin are developmentally regulated. With less kinesin available at later age, neurons are especially vulnerable to dysregulation of regulatory processes of FAT such as abnormal activation of CK2.
机译:阿尔茨海默氏病(AD)是最常见的成人发作性神经退行性疾病,它影响了超过500万美国人。 AD也是老年人中痴呆的最常见原因,即认知功能丧失。 AD的病理特征包括细胞外淀粉样斑块和细胞内神经原纤维缠结的存在,以及海马和基底前脑中胆碱能神经元的大量损失。除了遗传上遗传的家族形式的AD外,AD的病因很大程度上是未知的,AD的家族遗传形式已经鉴定出诸如早老蛋白1(PS1),PS2和淀粉样前体蛋白(APP)的蛋白质中的突变。与其他神经退行性疾病一样,尽管病理蛋白在许多不同类型的组织中普遍表达,但AD中仅神经元受到影响。为什么神经元在其他细胞类型保持正常的同时退化的原因尚不完全清楚。神经元与其他细胞类型的不同之处在于神经元具有高度极化的结构,轴突可能是细胞体长度的数千倍。轴突中几乎没有蛋白质合成,这意味着轴突及其末端正常运行所需的所有材料都必须从其合成部位,即顺行运输机械的细胞体中运输。同样,信号分子和要降解的物质在轴突中逆行转运。细胞轴蛋白和可溶性蛋白以轴突运输的慢速成分运输,而快速轴突运输(FAT)则运输膜结合细胞器(MBO)。 MBO通过驱动蛋白在顺逆方向上运输,而动力蛋白则在逆行方向上运输。神经元在功能和生存方面对轴突运输的高度依赖使它们比其他类型的细胞更容易受到任何破坏运输的侮辱。最近,FAT受损的作用已牵涉到许多神经退行性疾病的发病机理中,包括广告。此外,顺行运动Kif5A的显性负突变与遗传性痉挛性截瘫(HSP)10型有关,这是一种累及下运动神经元的进行性神经退行性疾病(Reid等,2006)。但是,运动蛋白本身的突变很少见,并且这种突变与AD无关。另一种解释是病理蛋白会影响FAT的调节过程。 FAT受运动蛋白磷酸化的调节。异常的激酶和磷酸酶活性可导致货物过早释放或异常的运输速度,从而导致垂死的神经退行性变。在AD中,tau蛋白的过度磷酸化为磷酸转移酶活性的失调提供了明确的证据。显示出在AD中具有改变的活性的激酶之一是CK2,多效丝氨酸/苏氨酸激酶(Iimoto等,1990)。活性鱿鱼CK2向孤立的鱿鱼轴质灌流可抑制FAT的两个方向(Morfini等,2001)。但是,这种抑制作用的分子机制及其在AD中的作用尚未得到研究。本文详细描述了由CK2活性升高导致的FAT损伤引起的分子事件及其在AD发病机制中的意义。首先,通过对作为淀粉样蛋白斑块主要成分的寡聚Aβ42(oAβ42)进行灌注的FAT速度实验表明,oAβ42直接激活CK2并损害FAT的两个方向,这是AD的病理特征。其次,利用生化方法研究了CK2破坏FAT的分子机制。用具有CK2激活剂的原代小鼠皮层神经元进行的微管(MT)结合测定表明,激活小鼠内源性CK2后,驱动蛋白与MT的结合会减少。还确定了CK2激活改变基于达因的逆行转运的新机制。碘克沙醇囊泡浮选法未能检测到CK2激活后运动蛋白与MBO结合的变化,但还需要进一步研究以确定CK2的亚群特异性作用。;使用AD小鼠模型的初级皮层神经元的研究(PS1-ki M146V)已证明在这种转基因小鼠品系中,驱动蛋白和动力蛋白与MT的结合均降低,而与MBO的结合则不受影响。先前的研究表明驱动蛋白轻链在CK2共有位点处磷酸化程度更高,尽管在当前工作中未在该动物的透化皮层神经元培养物中检测到CK2活性的改变。 AD的极具侵略性的小鼠模型(5xFAD)表现出CK2的大脑区域特异性激活。这些结果使我们提出了一种AD发病机理的新机制,该机制增加了Aβ42的产生导致CK2激活的改变,从而损害了FAT,导致特定大脑区域的神经元以垂死的方式退化。,另外的研究表明,驱动蛋白的表达水平受到发育的调节。由于在晚年可用的驱动蛋白较少,神经元特别容易受到FAT调节过程失调的影响,例如CK2的异常激活。

著录项

  • 作者

    Atagi, Yuka.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号