首页> 外文学位 >A fault-tolerant control architecture for unmanned aerial vehicles.
【24h】

A fault-tolerant control architecture for unmanned aerial vehicles.

机译:无人机的容错控制架构。

获取原文
获取原文并翻译 | 示例

摘要

Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.
机译:研究提出了几种在无人飞机上实现不同程度的容错能力的方法。可重构飞行控制的方法通常分为两类:结合了多个非自适应控制器并根据故障检测和识别元件的输出在它们之间进行切换的方法,以及采用能够补偿各种差异的单个自适应控制器的方法。故障模式。无论采用哪种可重构飞行控制方法,某些故障模式都会决定系统重组,以防止发生灾难性故障。系统重组可以主动控制标称系统未采用的致动,以恢复飞机的可控性。系统重组后,要继续运行,就需要生成遵循更改后的飞行包线的飞行路径。在这项研究中开发的控制体系结构采用了多层层次结构,即使出现潜在的灾难性故障,也允许无人飞机生成并跟踪安全的飞行路径。分层体系结构通过将五种功能与基准系统集成在一起,提高了系统的自治程度:故障检测和识别,主动系统重组,可重构飞行控制;可重新配置的路径规划和任务调整。故障检测和识别算法会持续监控飞机性能并发布故障声明。当故障的严重程度超过基准飞行控制器的能力时,主动系统重组将使用基准控制器未利用的非常规控制策略扩展飞机的可控制性。每个可重新配置的飞行控制器和基线控制器均采用成熟的自适应神经网络控制策略。可重构路径规划器采用车辆的自适应模型来对所需的飞行路径进行整形。修改后的飞行路径的生成被视为一个线性程序,该程序受降级系统的响应约束。最后,任务适应组件估计飞机的闭环性能限制,并据此调整飞机任务。使用两架无人直升机进行的模拟和飞行测试结果的组合验证了分层体系结构的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号