首页> 外文学位 >Role of osteopontin and osteocalcin in the organic-inorganic interface of bone tissue.
【24h】

Role of osteopontin and osteocalcin in the organic-inorganic interface of bone tissue.

机译:骨桥蛋白和骨钙素在骨组织的有机-无机界面中的作用。

获取原文
获取原文并翻译 | 示例

摘要

The decrease in bone mechanical properties occurs with age. The associated fragility fractures present a global public health concern. The use of bone mineral density as a predictor of risk of fracture is, however, limited. A more comprehensive understanding of bone quality and its link to bone fragility is thus desirable. Besides the brittleness caused by nonenzymatic glycation of collagen, bone fracture resistance is also influenced by noncollagenous components such as osteocalcin (OC) and osteopontin (OPN). The structural role of OC and OPN in bone and how they contribute to mechanical properties remains unclear. This project aims to elucidate these two aspects. Via tissue-level mechanical testing on a genetically modified animal model lacking OC and/or OPN, it was shown that OC and OPN contribute, as individual proteins and as a complex, to energy dissipation during static and cyclic loading. The OC and OPN were also found to be involved in tissue recovery when loading is removed. To verify that changes in recovery and energy dissipation in bone are linked to presence or absence of OC and OPN, and not due to collateral changes in collagen and mineral structure, a robust NMR method was developed to study bone structure at the atomic length scale. A comprehensive set of NMR experiments confirmed that the absence of OC and OPN does not appear to alter the order of collagen or the mineral. Instead, removal of OC and OPN leads to small changes in the organic-mineral interface that imply an increased exposure to hydroxyapatite (HA) mineral for some charged amino acids and for noncollagenous components including glucosaminoglycans and citrate. The results support a model where OC and OPN are present in the extrafibrillar interfaces. The link between the organic-mineral interface and the tissue-level properties was also studied using a synthetic model. A materials chemistry approach allowed evaluation of binding of anionic groups found in the organic matrix, including the OC and OPN, to HA in various surrounding media. Ethanol made the anionic interactions harder to dissociate. Ethanol soaking of whole bone led to delayed crack initiation when OC and OPN were present at the interface. OC and OPN thus contribute to bone mechanical properties via strong ionic interactions with HA surfaces. Based on the above results, it is concluded that OC and OPN are present in bone as structural elements, and that they contribute to tissue mechanical properties via ionic interactions at the interfaces between mineralized fibrils.
机译:骨骼机械性能的下降会随着年龄的增长而发生。相关的脆性骨折引起了全球公共卫生的关注。但是,使用骨矿物质密度作为骨折风险的预测指标是有限的。因此,需要对骨骼质量及其与骨骼脆性的联系有更全面的了解。除了胶原蛋白非酶促糖基化导致的脆性外,抗骨折性还受到非胶原成分(如骨钙蛋白(OC)和骨桥蛋白(OPN))的影响。尚不清楚OC和OPN在骨骼中的结构作用以及它们如何促进机械性能。该项目旨在阐明这两个方面。通过在缺少OC和/或OPN的转基因动物模型上进行组织级机械测试,结果表明OC和OPN作为单独的蛋白质和复合物,在静态和循环加载过程中有助于能量耗散。当去除负荷时,还发现OC和OPN参与组织恢复。为了验证骨骼恢复和能量消耗的变化与是否存在OC和OPN有关,而不是由于胶原和矿物质结构的附带变化而引起的,开发了一种鲁棒的NMR方法来研究原子长度范围内的骨骼结构。一组全面的NMR实验证实,不存在OC和OPN似乎不会改变胶原蛋白或矿物质的顺序。取而代之的是,去除OC和OPN会导致有机矿物质界面的细微变化,这意味着对于某些带电荷的氨基酸以及非胶原成分(包括葡糖胺聚糖和柠檬酸盐),羟基磷灰石(HA)矿物的暴露增加。结果支持了模型,其中原纤维界面中存在OC和OPN。还使用合成模型研究了有机矿物质界面与组织水平特性之间的联系。材料化学方法可以评估在有机基质(包括OC和OPN)中发现的阴离子基团与各种周围介质中的HA的结合。乙醇使阴离子相互作用更难解离。当OC和OPN存在于界面上时,整个骨骼的乙醇浸泡导致延迟的裂纹萌生。因此,OC和OPN通过与HA表面的强离子相互作用而有助于骨骼机械性能。基于以上结果,可以得出结论,OC和OPN作为结构元素存在于骨骼中,并且它们通过矿化原纤维之间的界面上的离子相互作用而有助于组织机械性能。

著录项

  • 作者

    Nikel, Ondrej.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 272 p.
  • 总页数 272
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号