首页> 外文学位 >Diagnosis of the flux emanating from the intermediate focus of an extreme ultraviolet light lithography source.
【24h】

Diagnosis of the flux emanating from the intermediate focus of an extreme ultraviolet light lithography source.

机译:诊断来自极紫外光刻源的中间焦点的通量。

获取原文
获取原文并翻译 | 示例

摘要

The implementation of extreme ultraviolet (EUV) light lithography as the solution for next generation lithography needs. In this paper, the effects of chamber pressure, buffer gas mass, and pinch gas mass on debris transport will be explored using the XTREME XTS 13-35 EUV light source. Utilizing the Sn Intermediate Focus Flux Emission Detector (SNIFFED), three triple Langmuir probes, as well as a set of Si witness plates placed along the mock-up collector optic and at the intermediate focus, it will be shown that the interaction between high energy electron and photons, energetic ions, and energetic neutrals with the buffer gas has a considerable impact on the creation and transport of non-EUV photon debris to the intermediate focus. The creation of an EUV light emitting plasma results in the propagation of three separate observable plasmas: one initiated by the high energy electrons decoupled from the plasma core, one caused by the energy retarded fast electrons coupled with the expansion of the high energy ions, as well as the expansion of the lower energy core of the EUV emitting plasma into the surrounding buffer gas. The generated plasmas are typically in the range of 3-6 eV with densities on the order of 1013 cm-3. It will be shown that electron temperatures and densities generally peak at 12 mTorr using Ar buffer gas and a N 2 fueled pinch. While electron temperatures greatly increase up to 11+/-2 eV with He buffer gas, and drop down to 6+/-1 eV for Ar buffer gas, the larger species with more electrons, and less ionization potential, have the highest density. In general there is very little effect observed in changing the pinch species used, except to change the arrival time of the second and third plasmas. With increased energy, and the consequent ionization, these buffer gas species sputter the chamber walls and introduce any contaminant there into the chamber atmosphere. If the pressure is not high enough, these species (oxygen and carbon) readily reach the intermediate focus and deposit on any surface after it. Furthermore, the presence of these expanding plasmas can contribute to a negative charge flux of ~-0.25+/-0.1x1011 e-cm-2 impending upon the intermediate focus facing surface, though the chamber pressure largely determines the amount of ions and electrons reaching the surface. The interaction between the intermediate focus facing components and the charged flux can lead to sputtering, or further deposition as the ions are accelerated through the built up sheath into the surface (depending on the suppression of the energetic ions and neutrals ejected from the EUV emitting plasma). The excitation of the buffer gas species also results in the transport of neutral atoms over 100 eV to the intermediate focus. This is largely affected by the chamber pressure (peak flux was observed at 6 mTorr with an arrival time of ~700 mus), buffer gas mass (40 AMU had the highest measured flux with an arrival time of ~800 mus), and pinch gas species (40 AMU pinch gas mass had the highest energy deposition into 40 AMU buffer gas, though arrival time was the same for all species. Furthermore, deposition rates at the intermediate focus were shown to peak at 2 mTorr with a rate of 1.5+/-0.3x10-4 nm/pulse and a total film concentration of oxygen and carbon totaling greater than 90%. Increasing pressure reduces deposition rate because of increased buffer gas suppression of depositing metals from the electrode, as well as increased etching by the higher density generated plasmas. Increasing buffer gas mass species were theoretically shown to decrease the deposition rate at the intermediate focus, though Sn and Cu particulates increased with increasing buffer gas mass due to arcing between the electrodes and resulting sputtering. Ultimately the understanding of the importance in choosing buffer gas mass, pinch gas mass, and chamber pressure are emphasized in regards to the transport of debris from the EUV emitting plasma to the intermediate focus.
机译:实施极端紫外线(EUV)光刻技术是下一代光刻技术的解决方案。在本文中,将使用XTREME XTS 13-35 EUV光源探索腔室压力,缓冲气体质量和夹带气体质量对碎片传输的影响。利用锡中间焦点通量发射检测器(SNIFFED),三个三重Langmuir探头以及一组沿着样机集光镜和中间焦点放置的Si见证板,将显示出高能之间的相互作用电子和光子,高能离子以及带有缓冲气体的高能中性粒子对非EUV光子碎片的产生和传输到中间焦点的影响很大。 EUV发光等离子体的产生导致三种独立的可观察等离子体的传播:一种是由与等离子体核心解耦的高能电子引发的,另一种是由能量受阻的快速电子加上高能离子的膨胀引起的,如以及将发射等离子体的EUV的低能核心扩展到周围的缓冲气体中。产生的等离子体通常在3-6 eV的范围内,密度约为1013 cm-3。将显示,使用Ar缓冲气体和N 2燃料夹点,电子温度和密度通常在12 mTorr达到峰值。当使用He缓冲气体使电子温度大大升高至11 +/- 2 eV,而使用Ar缓冲气体使电子温度下降至6 +/- 1 eV时,具有更多电子和较小电离势的较大物质具有最高的密度。通常,除了改变第二和第三等离子体的到达时间以外,在改变所用的收缩种类方面几乎观察不到效果。随着能量的增加以及随之而来的离子化,这些缓冲气体物质会溅射出腔室壁并将任何污染物引入腔室大气中。如果压力不够高,这些物质(氧和碳)很容易到达中间焦点并沉积在其后的任何表面上。此外,尽管腔室压力在很大程度上决定了离子和电子的到达量,但这些膨胀等离子体的存在可能会导致负电荷通量出现在面向中间聚焦表面的〜-0.25 +/- 0.1x1011 e-cm-2。表面。面对中间焦点的组件与带电通量之间的相互作用可能导致溅射或进一步沉积,因为离子会加速通过堆积的鞘层进入表面(取决于抑制从发射EUV的等离子体发射的高能离子和中性离子)。缓冲气体种类的激发还导致超过100 eV的中性原子传输到中间焦点。这在很大程度上受到腔室压力的影响(在6 mTorr处观察到峰值通量,到达时间为〜700 mus),缓冲气体质量(40 AMU具有最高测量通量,到达时间为〜800 mus)和夹气物种(40 AMU夹带气体质量到40 AMU缓冲气体中的能量沉积最高,尽管所有物种的到达时间都相同。此外,中间焦点处的沉积速率显示为2 mTorr的峰值,速率为1.5 + / -0.3x10-4 nm /脉冲,氧气和碳的总膜浓度总计大于90%。增加压力会降低沉积速率,这是因为缓冲气体对电极上沉积金属的抑制作用增强,以及较高密度的蚀刻作用增加了从理论上讲,增加缓冲气体的种类会降低中间焦点处的沉积速率,尽管由于电极和电弧之间的电弧放电,随着缓冲气体量的增加,Sn和Cu颗粒也会增加。溅射。最终,关于碎片从EUV发射等离子体到中间焦点的传输,强调了对选择缓冲气体质量,收缩气体质量和腔室压力的重要性的理解。

著录项

  • 作者

    Sporre, John R.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 330 p.
  • 总页数 330
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号