首页> 外文学位 >Genetic Analysis of Allosteric Signaling in RhaR from Escherichia coli and Characterization of the VirF Protein from Shigella flexneri.
【24h】

Genetic Analysis of Allosteric Signaling in RhaR from Escherichia coli and Characterization of the VirF Protein from Shigella flexneri.

机译:大肠杆菌RhaR中变构信号的遗传分析和弗氏志贺氏菌VirF蛋白的表征。

获取原文
获取原文并翻译 | 示例

摘要

The RhaR and VirF proteins are both members of the large AraC family of bacterial transcription regulators. RhaR activates expression of the Escherichia coli rhaSR operon in response to the effector L-rhamnose while VirF is the master regulator of expression of the Shigella flexneri type three secretion system (T3SS) and activates transcription in response to temperature and pH. Both proteins consist of two domains: an N-terminal domain (NTD) and a conserved DNA binding domain (DBD) responsible for binding to DNA and contacting RNA polymerase (RNAP) to activate transcription. The RhaR NTD is responsible for protein dimerization and binding the effector L-rhamnose and is required for maximal transcription activation. The VirF NTD is currently uncharacterized, but has been hypothesized to be involved in oligomerization (likely dimerization) of the protein. The principal goals of this study were to further define the mechanism of RhaR interdomain allosteric signaling and to characterize the general mechanisms of transcription activation by VirF.;In the current study, we sought to further elucidate the mechanism of allosteric signaling in RhaR that mediates the response to L-rhamnose. My approach was to examine the role of residues predicted to make interdomain contacts between the RhaR N-terminal domain (NTD) and DNA binding domain (DBD). I generated mutations to examine the role of residues in two regions of the DBD: Allosteric site in subdomain 2 (AS2) and the C-termini of the two helix-turn-helix motifs (C-HTH1 and C-HTH2). At AS2, results indicated that one residue may be involved in inhibitory contacts that reduce the activity of RhaR minus rhamnose. Furthermore this residue likely interacts with a residue in the RhaR Arm to inhibit transcription activation minus rhamnose. This conclusion is supported by the isolation of a second-site suppressor mutation in AS2 that restored activity of an Arm variant to wild-type levels. We propose that in the absence of L-rhamnose contacts between the RhaR Arm (in the NTD) and AS2 (in the DBD) regions minus rhamnose that constrain the RhaR conformation such that it is unable to efficiently activate transcription.;We also sought to better characterize the Shigella master virulence regulator, VirF. I first investigated the ability of the isolated VirF DBD to activate transcription. The isolated VirF DBD did not activate transcription above background levels, indicating the DBD is not sufficient to activate transcription in the absence of the NTD. We then investigated the role of the VirF NTD. Structural modeling of the VirF protein showed that the NTD of VirF may have structural similarity to the NTDs of the AraC and ToxT proteins, both of which are responsible for dimerization and effector binding. I subsequently screened for potential effectors of VirF and further investigated the oligomeric state of VirF. Preliminary results indicated that VirF likely forms dimers in solution in addition to binding to DNA as a dimer. Furthermore, the effector screen identified bicarbonate as a potential repressor of VirF activity, although more studies are necessary to confirm the role of bicarbonate in VirF activation. Nonetheless, I propose a model where bicarbonate may serve as a spatial regulator of expression of the Shigella T3SS, aiding in navigation of the organism to the large intestine where the organism invades the epithelial cells, establishing infection.;The last goal of this study was to investigate inhibition of RhaR and VirF by the small-molecule inhibitor SE-1 in vitro. SE-1 inhibits transcription activation in vivo and DNA binding in vitro of a closely related AraC family regulator, RhaS. I performed electrophoretic mobility shift assays in the presence or absence of SE-1 to determine the ability of the inhibitor to block DNA binding by either RhaR or VirF. I found that SE-1 was able to inhibit in vitro DNA binding by RhaR in a dose-dependent manner. Preliminary studies indicated that SE-1 also inhibited VirF in a dose-dependent manner. From our collective results, we propose that SE-1 blocks transcription activation of RhaS, RhaR and VirF by binding to the conserved DBD and blocking DNA binding. Binding of SE-1 to the conserved DBD that defines the AraC family of activators supports the hypothesis that SE-1 may inhibit other AraC family regulators, providing potential for development as a novel broad-spectrum anti-infective.
机译:RhaR和VirF蛋白都是细菌转录调节剂的大型AraC家族的成员。 RhaR响应效应子L-鼠李糖激活大肠杆菌rhaSR操纵子的表达,而VirF是弗氏志贺氏菌三型分泌系统(T3SS)表达的主要调节剂,并响应温度和pH值激活转录。两种蛋白质均由两个结构域组成:一个N末端结构域(NTD)和一个负责结合DNA并与RNA聚合酶(RNAP)接触以激活转录的保守DNA结合结构域(DBD)。 RhaR NTD负责蛋白质二聚化并结合效应L-鼠李糖,是最大转录激活所必需的。 VirF NTD目前尚未鉴定,但据推测与蛋白质的寡聚化(可能是二聚化)有关。本研究的主要目的是进一步定义RhaR域间变构信号的机制,并表征VirF激活转录的一般机制。在当前研究中,我们试图进一步阐明RhaR中的变构信号介导Hir的构象信号转导机制。对L-鼠李糖的反应。我的方法是检查预计在RhaR N末端域(NTD)和DNA结合域(DBD)之间进行域间接触的残基的作用。我产生了突变以检查残基在DBD的两个区域中的作用:亚结构域2(AS2)的变构位点和两个螺旋-转-螺旋基序(C-HTH1和C-HTH2)的C-末端。在AS2上,结果表明一个残基可能参与抑制接触,从而降低RhaR减去鼠李糖的活性。此外,该残基可能与RhaR Arm中的残基相互作用,抑制鼠李糖以外的转录激活。该结论得到了AS2中第二个位点抑制子突变的支持,该突变将Arm变体的活性恢复到了野生型水平。我们建议在RhaR臂(在NTD中)和AS2(在DBD中)区域之间不存在L-鼠李糖接触的情况下,减去限制RhaR构象的鼠李糖,使其无法有效激活转录。更好地表征了志贺氏菌主要毒力调节剂VirF。我首先研究了分离的VirF DBD激活转录的能力。分离的VirF DBD没有激活高于背景水平的转录,这表明在没有NTD的情况下,DBD不足以激活转录。然后,我们调查了VirF NTD的作用。 VirF蛋白质的结构模型表明,VirF的NTD可能与AraC和ToxT蛋白质的NTD具有结构相似性,这两者都负责二聚化和效应子结合。随后,我筛选了VirF的潜在效应子,并进一步研究了VirF的低聚状态。初步结果表明,VirF除了与DNA结合成二聚体外,还可能在溶液中形成二聚体。此外,效应子筛选确定碳酸氢盐为VirF活性的潜在阻遏物,尽管需要更多的研究来确认碳酸氢盐在VirF激活中的作用。尽管如此,我还是提出了一个模型,其中碳酸氢盐可以作为志贺氏菌T3SS表达的空间调节剂,以帮助生物体导航到该生物体侵入上皮细胞并建立感染的大肠。以研究小分子抑制剂SE-1对RhaR和VirF的体外抑制作用。 SE-1抑制了密切相关的AraC家族调节剂RhaS的体内转录激活和体外DNA结合。我在有或没有SE-1的情况下进行了电泳迁移率迁移分析,以确定抑制剂通过RhaR或VirF阻断DNA结合的能力。我发现SE-1能够以剂量依赖的方式抑制RhaR的体外DNA结合。初步研究表明SE-1也以剂量依赖性方式抑制VirF。从我们的集体结果,我们建议SE-1通过与保守的DBD结合并阻断DNA结合来阻断RhaS,RhaR和VirF的转录激活。 SE-1与定义AraC激活因子家族的保守DBD的结合支持了SE-1可能抑制其他AraC家族调节因子的假说,为新型广谱抗感染剂的开发提供了潜力。

著录项

  • 作者

    Kettle, Bria Collette.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Biology Microbiology.;Biology Genetics.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号