首页> 外文学位 >The Maximal Covering/Shortest Path Problem Revisited: An Examination and Reformulation of the Problem to Allow the Elimination or Attachment of Sub-Tours.
【24h】

The Maximal Covering/Shortest Path Problem Revisited: An Examination and Reformulation of the Problem to Allow the Elimination or Attachment of Sub-Tours.

机译:再次讨论了最大覆盖/最短路径问题:对这个问题的审查和重新制定,以消除或附加小组旅行。

获取原文
获取原文并翻译 | 示例

摘要

There are many problems that can be addressed as a spatial optimization problem, including location, districting, and routing. The problem addressed here is a routing problem that is inspired by transit system design. Transit systems in small to medium sized systems tend to utilize routes that involve loops. Routes in larger systems rarely have loops, other than the simple ones forced when travelling along parallel one-way streets. In larger cities, most routes can be considered as linear features. The literature on optimal routing design began with the work of Euler (1741) who defined the Euler Tour problem, which is commonly referred to as a postman problem. More recently, Dantzig et al.(1954) presented a formal mathematical model of the Travelling Salesman Problem and the Orden (1956) formulated the Shortest Path Problem as a mathematical programming problem. More recently, Current et al. (1984) formulated the shortest path covering problem. The shortest path covering problem represents the underlying design problem involved in transit system layout. This shortest path covering model and its variants optimize route coverage and route efficiency (as measured by route time or distance). Geographers and operations researchers have used the optimal covering-path model (Current et al. 1984 & 1985) in a number of ways to design systems of efficient transit routes. In fact, all optimal design problem formulations are based upon the original, classic work of Current.;Past research has built upon the ground-breaking work of Current et al (1984 & 1985) almost without question. This thesis revisits this classic research within the context of transit route design. It is demonstrated that the classic models are built with an implicit assumption that optimal routes will not contain loops. It is also shown that the proposed algorithmic solution approach of Current et al. (1984 & 1985) prevents the occurrence of most loops in a solution. It is shown that loops may indeed be part of an optimal route and that the original models and solution approach are therefore flawed. This is, in itself, a substantial finding.;A new model formulation is proposed for the maximal covering/shortest route problem which allows loops to be utilized in a solution, which would otherwise be excluded. In addition, a revised solution procedure is presented which allows loops to form whenever embedded loops are optimal. This new model, as well as the original models, are applied to a hypothetical network derived from the classic Swain dataset. The optimal tradeoff curve between route coverage and route distance is generated for vi both the classic model as well as the new, revised model. Solutions that contain loops are identified which are superior to what is generated by the original models.;This thesis has called into question the very underpinnings of a classic design problem and has shown that the original assumptions about embedded loops are wrong and that the classic model formulations and solution process are flawed. The work describe here will have a significant impact on future model development for cover-path problems and applications.
机译:有许多问题可以解决为空间优化问题,包括位置,分区和布线。此处解决的问题是一个路由问题,该问题受公交系统设计的启发。中小型系统中的公交系统倾向于利用涉及环路的路线。大型系统中的路线很少有环路,除了沿平行单向街道行驶时被迫的简单路线以外。在较大的城市中,大多数路线都可以视为线性特征。关于最佳路由设计的文献始于Euler(1741)的工作,该工作定义了Euler Tour问题,该问题通常称为邮递员问题。最近,Dantzig等人(1954年)提出了旅行商问题的正式数学模型,Orden(1956年)将最短路径问题表述为数学规划问题。最近,Current等。 (1984)制定了最短路径覆盖问题。最短路径覆盖问题表示运输系统布局中涉及的潜在设计问题。这种最短的路径覆盖模型及其变体可优化路径覆盖范围和路径效率(以路径时间或距离衡量)。地理学家和运筹学研究人员已通过多种方式使用最佳覆盖路径模型(Current等,1984和1985)来设计有效的过境路线系统。实际上,所有最佳设计问题公式都是以Current。的原始经典工作为基础的;过去的研究几乎毫无疑问地基于Current等人(1984&1985)的开创性工作。本文在公交路线设计的背景下回顾了这一经典研究。证明了经典模型是在隐含的假设下建立的,即最佳路由将不包含回路。还显示了Current等人提出的算法解决方案。 (1984&1985)防止了解决方案中大多数循环的发生。结果表明,回路确实可能是最佳路线的一部分,因此原始模型和解决方案方法存在缺陷。就其本身而言,这是一个实质性发现。针对最大覆盖/最短路径问题,提出了一种新的模型公式,该模型公式允许将回路用于解决方案中,否则将被排除在外。另外,提出了一种修订的解决方案过程,该过程允许在嵌入式循环最佳时形成循环。该新模型以及原始模型都应用于从经典Swain数据集派生的假设网络。对于经典模型以及新的修订模型,都会生成路径覆盖范围和路径距离之间的最佳折衷曲线。确定了包含循环的解决方案,这些解决方案要优于原始模型生成的解决方案。;本文对经典设计问题的根本依据提出了质疑,并表明关于嵌入式循环的原始假设是错误的,并且经典模型配方和解决方法存在缺陷。此处描述的工作将对涵盖路径问题和应用程序的未来模型开发产生重大影响。

著录项

  • 作者

    Niblett, Timothy John.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Geography.;Engineering Civil.;Regional Studies.
  • 学位 M.A.
  • 年度 2013
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号