首页> 外文学位 >Shortest path - capacitated maximum covering problems.
【24h】

Shortest path - capacitated maximum covering problems.

机译:最短路径-容量最大的覆盖问题。

获取原文
获取原文并翻译 | 示例

摘要

I study the shortest path - capacitated maximum covering problem (SP-CMCLP). Current, ReVelle and Cohon (1985) first studied the un-capacitated version of this problem. The two objectives of the problem are the minimization of the path length from a predetermined starting node to a predetermined terminal node and the maximization of the total demand covered by the facilities located at the nodes in the path. They solved a special case in which a demand can be covered only if it is located on the path. I solve the general model. I also introduce facility capacity constraints, new algorithms and new demand coverage structures to this problem.;I decompose the problem into a k-shortest path problem (kSP) and a capacitated maximum covering problem (CMCLP). The k-shortest path problem is solved by a path deletion algorithm (refer to Azevedo, et al., 1993, 1994). The capacitated maximum covering problem is solved by various heuristics and meta-heuristics including lagrangian relaxation, two versions of Tabu search and a simulated annealing method.;To the knowledge of the author, the Tabu search and simulated annealing methods introduced are the first meta-heuristics developed for the capacitated maximum covering problem. In these meta-heuristics, I use four neighborhood structures. These are (1) one-interchange which exchanges an selected facility with an unselected facility, (2) client shift which shifts a satisfied demand from one selected facility to another selected facility, (3) demand swap (or demand reallocation) which swaps one (or more) assigned demand node (nodes) with one (or more) unassigned demand node (nodes) within the coverage distance of a selected facility site, (4) demand addition which adds one or more unassigned demand to a selected facility. These neighborhoods are at different levels and are used in different stages of the meta-heuristics. I design an embedded meta-heuristic procedure which has inner loops of single neighborhoods and an outer loop of multiple alternate inner loops for different neighborhoods. I design a heuristic method and a penalty method for the demand allocation sub-problem in the embedded Tabu search. In the penalty method, I use surrogate relaxation and add a penalty term to the objective function for the violated capacity constraints. An embedded simulated annealing method with temperature vibration is also designed using heuristic demand allocation.;I also solve a new version of the shortest path - capacitated maximum covering problem with tree coverage structure (SP-CMCLP-TREE). Demand is supplied by sub-paths on a minimum spanning tree constructed from an underlying network. A demand is counted as covered if the total arc length of a path from the demand to a facility site is within coverage distance and the demand can be satisfied only if all the intermediate demand nodes on the path are satisfied.;Computational results for networks selected from literature show the effectiveness of the heuristics designed. Tabu search performs the best in solution quality, while Lagrangian relaxation and simulated annealing generate solutions of satisfactory quality using less time. Different path-coverage structures are used based on the properties of the networks. Tree demand coverage structure works better than traditional coverage structure for large partial networks. The impact of different network parameters are also studied.
机译:我研究了最短路径-容量最大覆盖问题(SP-CMCLP)。目前,ReVelle和Cohon(1985)首次研究了该问题的无容量版本。该问题的两个目的是使从预定的起始节点到预定的终端节点的路径长度最小化,以及使位于该路径上的节点处的设施所覆盖的总需求最大化。他们解决了一种特殊情况,即仅当需求位于路径上时,才能满足需求。我解决了一般模型。我还介绍了该问题的设施容量约束,新算法和新需求覆盖结构。我将问题分解为k最短路径问题(kSP)和最大容量覆盖问题(CMCLP)。 k最短路径问题通过路径删除算法解决(请参阅Azevedo等,1993,1994)。容量最大覆盖问题是通过各种启发式方法和元启发式方法解决的,包括拉格朗日松弛法,禁忌搜索的两个版本和模拟退火方法。;据作者所知,禁忌搜索和引入的模拟退火方法是第一个元算法。针对容量最大覆盖问题开发的启发式方法。在这些元启发式方法中,我使用了四个邻域结构。这些是(1)一个将选定设施与未选定设施交换的交换;(2)将满足的需求从一个选定设施转移到另一个选定设施的客户转移;(3)交换一个的需求交换(或需求重新分配) (或更多)已分配需求节点(节点),以及在所选设施站点覆盖范围内的一个(或多个)未分配需求节点(节点),(4)需求增加,将一个或多个未分配需求添加到所选设施。这些邻域处于不同的级别,并用于元启发式算法的不同阶段。我设计了一个嵌入式的元启发式过程,该过程具有单个邻域的内部循环和针对不同邻域的多个备用内部循环的外部循环。针对嵌入式禁忌搜索中的需求分配子问题,我设计了一种启发式方法和一种惩罚方法。在惩罚方法中,我使用代理松弛,并针对违规的容量约束向目标函数添加了惩罚项。还使用启发式需求分配设计了一种带有温度振动的嵌入式模拟退火方法。我还解决了最短路径的新版本-具有树覆盖结构(SP-CMCLP-TREE)的带容量最大覆盖问题。需求由基础网络构建的最小生成树上的子路径提供。如果从需求到设施站点的路径的总弧长在覆盖范围内,并且仅当路径上的所有中间需求节点都满足时,才可以满足需求。从文献中可以看出启发式设计的有效性。禁忌搜索在解决方案质量方面表现最佳,而拉格朗日松弛和模拟退火可在更短的时间内生成令人满意的解决方案。根据网络的属性使用不同的路径覆盖结构。对于大型局部网络,树需求覆盖结构比传统覆盖结构效果更好。还研究了不同网络参数的影响。

著录项

  • 作者

    Hua, Liyan.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Business Administration Management.;Operations Research.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 255 p.
  • 总页数 255
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号