首页> 外文学位 >Periodic Behavior in Cardiac Tissue: Dynamics of Spatially Discordant Calcium Alternans.
【24h】

Periodic Behavior in Cardiac Tissue: Dynamics of Spatially Discordant Calcium Alternans.

机译:心脏组织中的周期性行为:空间不一致的钙交替蛋白的动力学。

获取原文
获取原文并翻译 | 示例

摘要

The study of cardiac alternans, a phenomenon characterized by beat-to-beat alternations of activity in cardiac tissue that has been directly linked with sudden cardiac arrest, has become an important area of research at the intersection of biology, physics, and mathematics. In this Thesis, we derive and study the spatiotemporal dynamics of a reduced model describing the beat-to-beat evolution of calcium-driven alternans in a periodically-paced cable of tissue. This work can be thought of as an extension of the seminal work of Echebarria and Karma [Physical Review Letters, 88:208101, 2002; Physical Review E, 76:051911, 2007], which was the first analytical treatment of alternans in tissue. While Echebarria and Karma considered the case of alternans driven by a voltage-mediated instability and neglected the effect of calcium dynamics, we extend this approach to the important case of a calcium-mediated instability and account for the effect of bi-directional coupling between voltage and calcium dynamics. Our reduced model consists of two bi-directionally coupled integro-difference equations that describe the amplitude of alternans in calcium and voltage along a cable of tissue. In agreement with detailed ionic models, our reduced model yields three solution regimes separated by two bifurcations. The three regimes are described by (i) no alternans, (ii) smooth wave patterns, and (iii) discontinuous patterns. Due to the smoothing effect of electrotonic coupling on voltage, discontinuous patterns are non-physical in voltage-driven alternans, and thus can only be observed when the instability is mediated by the calcium dynamics. We study spatial properties and dynamics of solutions in each regime, as well as several novel properties of solutions in the third regime. We find that solutions in the third regime are subject to unique memory and hysteresis effects, which are not present in the solutions in the second regime. In addition to symmetrizing the shape of profiles about the phase reversals, or node, we find a novel phenomenon we call unidirectional pinning, a mechanism where nodes can be moved towards, but not away from, the pacing site when parameters are changed. Furthermore, we find that while the spatial wavelength of solutions in the smooth regime scales sub-linearly with the conduction velocity (CV) length scale, the spatial wavelength of solutions in the discontinuous regime scales linearly with this length scale. Due to the tendency for nodes to cause conduction blocks in tissue, we hypothesize that intracellular calcium-driven alternans are more arrhythmogenic than previously believed since they cannot be expelled from the cable due to unidirectional pinning. We complement these analytical results with numerical studies of a detailed, biologically robust ionic model of a cable of cells. We show that our reduced model captures the behavior of these detailed ionic models and can in fact predict their dynamics, and that detailed ionic models display the novel properties found in the reduced model, including unidirectional pinning. This work extends our theoretical understanding of alternans to include the important effect of calcium dynamics. Finally, we make concluding remarks about physiological implications and experiment suggestions as well as discuss possible extensions and future work.
机译:心脏交替性的研究是一种与心脏骤停直接相关的,以心脏组织的逐跳交替为特征的现象,已成为生物学,物理学和数学交叉领域的重要研究领域。在本论文中,我们推导并研究了简化模型的时空动力学,该模型描述了钙离子驱动的交替素在周期性起搏的组织电缆中的逐跳演化。可以认为这项工作是埃希伯里亚和业力的开创性工作的延伸[Physical Review Letters,88:208101,2002; Physical Review E,76:051911,2007],这是组织中交替素的第一种分析治疗。尽管Echebarria和Karma考虑了由电压介导的不稳定性驱动的交替蛋白的情况,而忽略了钙动力学的影响,但我们将此方法扩展到了钙介导的不稳定性的重要情况下,并考虑了电压之间的双向耦合影响和钙动力学。我们的简化模型由两个双向耦合的积分差方程组成,这些方程描述了沿着组织电缆的钙和电压交替链的幅度。与详细的离子模型一致,我们的简化模型产生了由两个分叉分开的三个溶液方案。通过(i)无交替信号,(ii)平滑波模式和(iii)不连续模式来描述这三种情况。由于电渗耦合对电压的平滑作用,不连续的模式在电压驱动的交替晶中是非物理的,因此只有在钙动力学介导不稳定性时才能观察到。我们研究每种方案中溶液的空间性质和动力学,以及第三种方案中溶液的几种新颖性质。我们发现,第三种方案中的解决方案具有独特的记忆和滞后效应,而第二种方案中的解决方案中不存在这种效应。除了对称化关于相位反转或节点的轮廓形状外,我们还发现了一种称为单向固定的新现象,该机制是在更改参数时可以将节点移向起搏点但不能远离起搏点的机制。此外,我们发现,尽管光滑状态下溶液的空间波长与传导速度(CV)长度尺度呈亚线性关系,但不连续状态下溶液的空间波长与该长度尺度呈线性关系。由于结节趋向于引起组织中传导阻滞的趋势,我们假设细胞内钙驱动的交替蛋白比以前认为的更具有心律失常作用,因为由于单向钉扎它们无法从电缆中排出。我们通过对细胞电缆的详细的,生物学上可靠的离子模型进行数值研究,对这些分析结果进行补充。我们表明,我们的简化模型捕获了这些详细的离子模型的行为,并且实际上可以预测它们的动力学,并且详细的离子模型显示了在简化模型中发现的新特性,包括单向钉扎。这项工作扩展了我们对交替素的理论理解,以包括钙动力学的重要作用。最后,我们就生理学意义和实验建议作总结性发言,并讨论可能的扩展和未来的工作。

著录项

  • 作者

    Skardal, Per Sebastian.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Applied Mathematics.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号