首页> 外文学位 >The Role of Mechanical Forces in Patterning and Morphogenesis of the Vertebrate Gut.
【24h】

The Role of Mechanical Forces in Patterning and Morphogenesis of the Vertebrate Gut.

机译:机械力在脊椎动物肠道形态和形态发生中的作用。

获取原文
获取原文并翻译 | 示例

摘要

The vertebrate small intestine is responsible for nutrient absorption during digestion. To this end, the surface area of the gut tube is maximally expanded, both through a series of loops extending its length and via the development of a complex luminal topography.;Here, I first examine the mechanism behind the formation of intestinal loops. I demonstrate that looping morphogenesis is driven by mechanical forces that arise from differential growth between the gut tube and the anchoring dorsal mesenteric sheet. A computational model based on measured parameters not only quantitatively predicts the looping pattern in chick, verifying that these physical forces are sufficient to explain the process, but also accounts for the variation in the gut looping patterns seen in other species.;Second, I explore the formation of intestinal villi in chick. I find that intestinal villi form in a stepwise process as a result of physical forces generated as proliferating endodermal and mesenchymal tissues are constrained by sequentially differentiating layers of smooth muscle. A computational model incorporating measured differential growth and the geometric and physical properties of the developing chick gut recapitulates the morphological patterns seen during chick villi formation. I also demonstrate that the same basic biophysical processes underlie the formation of intestinal folds in frog and villi in mice.;Finally, I focus on the process by which intestinal stem cells are ultimately localized to the base of each villus. The endoderm expresses the morphogen, Sonic hedgehog (Shh). As the luminal surface of the gut is deformed during villus formation there are resulting local maxima of Shh signaling in the mesenchyme. This results, at high threshold, in the induction of a new signaling center under the villus tip termed the villus cluster. This, in turn, feeds back to restrict proliferating progenitors in the endoderm, the presumptive precursors of the stem cells, to the base of each villus.;Together, these studies provide new insight into the formation of the small intestine as a functional organ and highlight the interplay between physical forces, tissue-level growth, and signaling during development.
机译:脊椎动物的小肠负责消化过程中的营养吸收。为此,通过一系列延长其长度的环以及通过形成复杂的管腔形貌,最大程度地扩大了肠管的表面积。在这里,我首先研究肠环形成的机理。我证明了环的形态发生是由肠管和锚固的背膜肠系膜之间的差异性生长引起的机械力驱动的。基于测量参数的计算模型不仅可以定量预测雏鸡的循环模式,验证这些物理力足以解释这一过程,而且还可以解释其他物种中肠道循环模式的变化。小鸡肠绒毛的形成。我发现肠内绒毛是逐步形成的,这是由于增生的内胚层和间充质组织受到依次分化的平滑肌层而产生的物理力所致。计算模型结合了已测得的差异生长以及发育中的雏鸡肠的几何和物理特性,概括了雏鸡绒毛形成过程中观察到的形态学模式。我还证明了相同的基本生物物理过程是小鼠青蛙和绒毛肠折叠形成的基础。最后,我着重研究了肠道干细胞最终定位于每个绒毛基部的过程。内胚层表达形态发生子,声波刺猬(Shh)。由于肠的腔表面在绒毛形成期间变形,因此在间充质中导致Shh信号的局部最大值。在高阈值下,这导致了被称为绒毛簇的绒毛尖端下方诱导了一个新的信号中心。反过来,这种反馈又能将内胚层中的增殖祖细胞(即干细胞的推测前体)限制在每个绒毛的基础上。这些研究共同为小肠作为功能器官的形成提供了新的见解。强调身体力量,组织水平生长和发育过程中信号传导之间的相互作用。

著录项

  • 作者

    Shyer, Amy Elizabeth.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Developmental biology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号