首页> 外文学位 >The interplay between intrinsic cell properties and synaptic dynamics on the generation of oscillations in cortical network models.
【24h】

The interplay between intrinsic cell properties and synaptic dynamics on the generation of oscillations in cortical network models.

机译:皮质网络模型中固有细胞特性与突触动力学之间相互作用的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Oscillations in the field potential, that can be associated with behavior, have been identified experimentally in cortical structures of humans and several animal species. During fast field oscillations (gamma oscillations (40--80 Hz) and sharp waves (100--200 Hz)) cortical neurons typically discharge irregularly and at much lower frequency than that of the field potential. It is not clear what is the mechanism that leads to the synchronization and rhythmic firing of neuronal populations given the almost Poisson-like discharge statistics of single cells. One aim of this dissertation is to investigate the seeming dichotomy between the rhythmicity of the field potential and the irregular discharge of single cells using an approach based on the neuron's firing probability rather than on the knowledge of exact spike timing. We use neuronal networks composed of inhibitory and excitatory conductance-based model neurons to address the question of what determines the frequency of fast network oscillations. We show that the population dynamics can be predicted on the basis of the synaptic and single cell parameters. Furthermore, we investigate a second type of field oscillations, theta oscillations (4--8 Hz), that are thought to play an important role in cognitive processes. Neurons have been identified that show inherent rhythmic firing at theta frequency and are thought to play the role of pacemakers for neuronal populations. We show that pacemaker neurons can engage neuronal populations into rhythmic firing while being in reciprocal connections with them. We propose a network model for hippocampal theta oscillations and investigate the contributions of different classes of inhibitory and excitatory neurons to the field oscillations on the basis of their discharge characteristics that have been found experimentally in vivo. These network models allow us to demonstrate how different mechanism can lead to oscillations in distinct frequency bands and we provide a framework that helps us to understand the emergence and interaction of different cortical rhythms. This thesis presents an advance in the direction of network oscillations that incorporate realistic single cell features and network parameters.
机译:在人类和几种动物的皮层结构中,已经通过实验确定了与行为有关的场势振荡。在快速场振荡(伽马振荡(40--80 Hz)和尖波(100--200 Hz))期间,皮层神经元通常会不规则地放电并且其频率比场电位低得多。鉴于单个细胞几乎具有泊松样放电统计,目前尚不清楚什么机制能导致神经元群体的同步和节律放电。本文的目的之一是研究一种基于神经元发射概率而不是确切的尖峰定时的方法,研究电场势的节奏性与单个细胞的不规则放电之间的看似二分法。我们使用由基于抑制性和兴奋性电导的模型神经元组成的神经元网络来解决决定快速网络振荡频率的问题。我们表明,可以根据突触和单细胞参数预测种群动态。此外,我们研究了第二种场振荡,θ振荡(4--8 Hz),被认为在认知过程中起着重要作用。已经鉴定出神经元,它们在theta频率下表现出固有的节律性放电,并被认为在神经元人群中起着起搏器的作用。我们表明,起搏器神经元可以与有规律的联系而使神经元群体有节奏地放电。我们提出了海马θ振荡的网络模型,并基于在体内实验发现的放电特性,研究了不同种类的抑制性和兴奋性神经元对场振荡的贡献。这些网络模型使我们能够证明不同的机制如何导致不同频带中的振荡,并且我们提供了一个框架来帮助我们了解不同皮质节律的出现和相互作用。本文提出了结合实际单细胞特征和网络参数的网络振荡方向。

著录项

  • 作者

    Geisler, Caroline.;

  • 作者单位

    Brandeis University.;

  • 授予单位 Brandeis University.;
  • 学科 Biophysics General.; Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号