首页> 外文学位 >Spike Neuromorphic Carbon Nanotube Circuits.
【24h】

Spike Neuromorphic Carbon Nanotube Circuits.

机译:尖峰神经形态碳纳米管电路。

获取原文
获取原文并翻译 | 示例

摘要

The brain has a superior computation performance in comparison with supercomputers in many aspects while the brain consumes much less power (∼ 20 W) than supercomputers (∼ 106 W). This is mainly owing to synapses, which are the fundamental elements in the brain, and their properties such as spatiotemporal signal processing, memory, and learning. Therefore, it is crucial to implement an electronic device which can emulate the elementary functions of biological synapses in order to mimic the functions of the brain. In this research, two types of synaptic transistors (synapstors) using carbon nanotubes (CNTs) are demonstrated. First, a CNT network transistor with a poly(ethylene glycol) monomethyl ether (PEG) layer in the gate is presented. It has successfully emulated the elementary functions of biological synapses with low power consumption (250 pW/synapstor). Second, a CNT network transistor with C60 molecules is shown to mimic the essential functions of biological synapses with low power consumption (2.6 nW/synapstor). A spike neuromorphic circuit (SNC) was developed by integrating CNT synapstors. The SNC has a capability of parallel signal processing, spatiotemporal correlation, learning with low power consumption. It has both excitatory and inhibitory synapses and can generate output spikes from the accumulated post-synaptic currents. The large-scale SNC with 16,384 synapstors and 16 neurons has been designed and fabricated. The power consumption of a large-scale SNC is ∼ 1.8 mW. The functions of a SNC were demonstrated. The toy drone was used as a platform to interact with the SNC. The SNC dynamically processed the sensing signals from the drone and triggered actuation of the drone in real-time. The performance of the drone was improved via the learning in SNC. The SNC has a potential to have higher signal processing speed and be more efficient in power consumption than a supercomputer when the dimension of parallel signal processing exceeds ∼10 9.
机译:与超级计算机相比,大脑在许多方面都具有出色的计算性能,而与超级计算机(约106 W)相比,它消耗的功率(约20 W)少得多。这主要归因于突触,它们是大脑的基本元素,其属性包括时空信号处理,记忆和学习。因此,至关重要的是实现一种能够模仿生物突触的基本功能以模仿大脑功能的电子设备。在这项研究中,展示了使用碳纳米管(CNT)的两种类型的突触晶体管(synapstor)。首先,提出了一种在栅极中具有聚(乙二醇)单甲醚(PEG)层的CNT网络晶体管。它已经成功地模拟了低功耗(250 pW / synapstor)的生物突触的基本功能。其次,具有C60分子的CNT网络晶体管显示出以低功耗(2.6 nW / synapstor)模拟生物突触的基本功能。尖峰神经形态电路(SNC)是通过整合CNT突触来开发的。 SNC具有并行信号处理,时空相关,低功耗学习的能力。它既具有兴奋性突触又具有抑制性突触,并且可以从累积的突触后电流产生输出尖峰。具有16384个突触和16个神经元的大规模SNC已被设计和制造。大型SNC的功耗约为1.8 mW。演示了SNC的功能。玩具无人机被用作与SNC交互的平台。 SNC动态处理来自无人机的感应信号并实时触发无人机的致动。通过在SNC中学习,无人机的性能得以提高。当并行信号处理的尺寸超过〜10 9时,与超级计算机相比,SNC可能具有更高的信号处理速度和更高的功耗效率。

著录项

  • 作者

    Kim, Kyunghyun.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Biology Neuroscience.;Nanotechnology.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号