首页> 外文学位 >Isolation and characterization of Candidatus Chloracidobacterium thermophilum.
【24h】

Isolation and characterization of Candidatus Chloracidobacterium thermophilum.

机译:嗜热梭菌的分离与鉴定。

获取原文
获取原文并翻译 | 示例

摘要

Historically, new microorganisms have been discovered either by setting up enrichment cultures in the laboratory that favor particular types of physiologies or by sequencing the amplified 16S ribosomal RNA gene from DNA extracted from environmental samples. These approaches have been successful in exposing the large variety of physiological capabilities (enrichment cultures) and vast phylogenetic diversity (16S rRNA surveys) of the microbial world. Yet they pose severe limitations to furthering our understanding of microbial diversity and to the discovery of microorganisms with novel physiologies. Another approach, metagenomics, has emerged as a powerful tool to study community composition, to define physiological capabilities of microbial communities and to discover novel microorganisms. A particularly fascinating group of microorganisms to study are the chlorophototrophs. Chlorophototrophs use membrane-embedded chlorophyll-protein complexes called reaction centers to harvest light energy and transform it into chemical energy. Prior to the work presented here, there were five known bacterial phyla that contained chlorophototrophs, including the Cyanobacteria, Chlorobi, Chloroflexi, Firmicutes and Proteobacteria. These distinct groups vary in their reaction centers, accessory pigments and carbon metabolism among other properties. Microbial mats in alkaline hot springs of Yellowstone National Park are dominated by chlorophototrophic microorganisms and provide an ideal setting for studying them. The mats from two particular springs, Octopus and Mushroom Springs, have been the subject of over three decades of research, and much is known about their geochemistry and microbial composition. Two phyla of chlorophototrophs, the Cyanobacteria and the Chloroflexi reside in these low-carbonate and low-sulfide mats. A metagenomic study conducted on these mats revealed the presence of a third type of chlorophototroph that had escaped detection by other approaches and that belongs to the phylum Acidobacteria, a phylum previously not known to contain chlorophototrophs. An analysis of the metagenome predicted this new chlorophototroph, Candidatus Chloracidobacterium thermophilum, to have Type-1 reaction centers, the Fenna Matthew Olson protein and chlorosomes as antenna structures, properties also found in the chlorophototrophic Chlorobi. Unlike the Chlorobiales, however, Cab. thermophilum was predicted to be an aerobe. The present work describes the isolation of this new chlorophototroph in culture and its initial characterization. An enriched culture of Cab. thermophilum has been generated from a cyanobacterial enrichment culture cultivated from the mats of Octopus Spring that contained Cab. thermophilum as a minor component. Like other Acidobacteria, Cab. thermophilum is difficult to culture and has long generation times and fastidious growth requirements. In addition, the culture contains heterotrophic microorganisms that seem to be providing unidentified, essential growth factor(s). Physiological studies of this culture have confirmed the metagenomic predictions that Cab. thermophilum is an aerobic chlorophototroph that synthesizes chlorosomes containing bacteriochlorophyll c as antenna pigments. In order to understand the physiology of Cab. thermophilum further, its genome has been completely sequenced. It consists of two chromosomes, both of which harbor essential genes. The genome contains all of the genes required for phototrophy with chlorosomes as antenna structures but lacks key genes of all known carbon fixation pathways, as well as genes for assimilatory nitrate and sulfate reduction. In addition, it lacks the biosynthetic pathways for the synthesis of the amino acids valine, isoleucine and leucine. These genomic analyses clearly define Cab. thermophilum as a chlorophotoheterotroph that is dependent on other members of the mat community for essential nutrients. The structure of the chlorosome antenna complex of Cab. thermophilum has been investigated and its protein, lipid, quinone and pigment composition elucidated. Although synthesized by an aerobe, the chlorosomes resemble those of other green bacteria in their general shape and by the presence of CsmA and CsmI-like proteins. However, they contain additional unique proteins and lipids. Moreover, the presence of the xanthophylls echinenone and canthaxanthin reflects the aerobic environment from which Cab. thermophilum was isolated. Like the chlorophototrophic Chlorobi, Cab. thermophilum synthesizes three types of chlorophylls, bacteriochlorophyll (BChl) c, chlorophyll (Chl) a and BChl a. High performance liquid chromatography analyses combined with mass spectrometry have revealed that Cab. thermophilum methylates its BChl c at the C-8 and C-12 positions and that its C-17 propionic group is esterified with a variety of isoprenoid and straight alkane moieties. The most abundant BChl c species, especially at high light intensities, has been found to be [8-iBu, 12-Et]-BChl c esterified with the unbranched C-18 alcohol, octadecanol. Interestingly, although Cab. thermophilum is an aerobe, its chlorosomes exhibit redox-dependent quenching of fluorescence emission. Lastly, carotenoid biosynthesis in Cab. thermophilum has been investigated. Three genes predicted to code for a lycopene cyclase, a ketolase, and a hydroxylase respectively have been expressed heterologously and their enzymatic activities confirmed.
机译:历史上,通过在实验室中建立有利于特定生理类型的富集培养物,或通过对从环境样品中提取的DNA扩增的16S核糖体RNA基因进行测序,发现了新的微生物。这些方法已经成功地揭示了微生物世界的各种生理功能(丰富的培养物)和巨大的系统发育多样性(16S rRNA调查)。然而,它们对进一步加深我们对微生物多样性的了解以及对具有新生理学的微生物的发现提出了严重的限制。宏基因组学的另一种方法已成为研究群落组成,定义微生物群落的生理能力和发现新型微生物的有力工具。要研究的一组特别引人入胜的微生物是绿灯营养菌。叶绿体营养体使用称为反应中心的膜嵌入叶绿素-蛋白质复合物来收集光能并将其转化为化学能。在这里介绍工作之前,有五个已知的细菌门,其中都含有绿光化细​​菌,包括蓝细菌,绿藻,绿弯曲菌,硬毛菌和变形杆菌。这些不同的基团在其反应中心,辅助色素和碳代谢等方面具有不同的特性。黄石国家公园碱性温泉中的微生物垫主要由氯代营养微生物组成,为研究它们提供了理想的环境。来自两个特定弹簧(章鱼和蘑菇泉)的垫子已经成为超过三十年研究的主题,并且它们的地球化学和微生物组成也广为人知。在这些低碳酸盐和低硫化物的垫子中存在着两类绿光化营养菌,蓝细菌和绿藻。在这些垫子上进行的宏基因组学研究表明,存在第三种类型的氯光化营养菌,该营养素已经通过其他方法逃脱了检测,属于酸性细菌门(Acumum Acidobacteria)。对元基因组的分析预测,这种新的绿光营养型嗜热念珠菌,将具有1型反应中心,费纳·马修·奥尔森蛋白和绿体作为触角结构,并且在绿光营养型绿藻中也发现了这种特性。与Chlorobiales不同,Cab。嗜热菌被认为是需氧菌。本工作描述了在培养物中这种新的氯光养菌的分离及其初步表征。出租车的丰富文化。嗜热菌是从含有驾驶室的章鱼泉垫上培养的蓝细菌富集培养物产生的。嗜热菌为次要成分。像其他酸性细菌一样,驾驶室。嗜热菌难以培养,并且产生时间长且对生长的要求很高。此外,培养物中还含有异养微生物,这些微生物似乎提供了无法确定的必需生长因子。这种文化的生理学研究证实了驾驶室的宏基因组学预测。嗜热菌是一种需氧的绿养生物,它合成含有细菌叶绿素c作为触角色素的绿体。为了了解驾驶室的生理。此外,嗜热菌的基因组已完全测序。它由两条染色体组成,两条染色体都包含必需基因。该基因组包含了用氯体作为天线结构进行光养所需的所有基因,但缺少所有已知碳固定途径的关键基因,以及同化硝酸盐和硫酸盐还原的基因。另外,它缺乏用于合成氨基酸缬氨酸,异亮氨酸和亮氨酸的生物合成途径。这些基因组分析清楚地定义了驾驶室。嗜热菌是一种氯光异养菌,它依赖于垫子群落的其他成员获得基本营养。驾驶室的氯仿天线复合物的结构。已对嗜热菌进行了研究,并阐明了其蛋白质,脂质,醌和色素成分。尽管绿藻体是由需氧菌合成的,但它们的一般形状和CsmA和CsmI样蛋白的存在类似于其他绿色细菌的绿体。但是,它们还包含其他独特的蛋白质和脂质。此外,叶黄素海胆烯酮和角黄素的存在反映了驾驶室的有氧环境。嗜热菌被分离。像氯光化的Chlorobi,Cab。嗜热菌可合成三种类型的叶绿素:细菌叶绿素(BChl)c,叶绿素(Chl)a和BChl a。高效液相色谱分析与质谱相结合已显示出Cab。嗜热菌将其BChl c在C-8和C-12位置甲基化,并且其C-17丙酸酯基被各种类异戊二烯和直链烷烃部分酯化。 BChl c种类最丰富,尤其是在高光强度下已经发现,[8-iBu,12-Et] -BChl c被直链C-18醇十八醇酯化。有趣的是,尽管出租车。嗜热菌是一种需氧菌,其氯体显示出氧化还原依赖性的荧光发射猝灭。最后,在驾驶室中类胡萝卜素的生物合成。嗜热菌已被调查。预测分别编码番茄红素环化酶,酮醇酶和羟化酶的三个基因已异源表达,并确认了其酶促活性。

著录项

  • 作者

    Garcia Costas, Amaya M.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Biology Microbiology.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 247 p.
  • 总页数 247
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号