首页> 外文学位 >Computational analysis of blood transcriptional signatures in the study of HCV susceptibility, infection and therapy response.
【24h】

Computational analysis of blood transcriptional signatures in the study of HCV susceptibility, infection and therapy response.

机译:HCV易感性,感染和治疗反应研究中血液转录特征的计算分析。

获取原文
获取原文并翻译 | 示例

摘要

Understanding the body's response to infection is an important part of disease research. The responses to viral infection in individual tissues is commonly studied using gene expression microarrays, and the blood has proven to be a particularly useful tissue in the study of a number of infections. In this dissertation, we use computational analysis of a number of microarray datasets to understand the global effects of chronic Hepatitis C virus (HCV) infection on the blood of infected patients, and we discuss new computational techniques which have been developed to analyze this data. We find that, during chronic infection with HCV, pathways associated with the innate immune response were significantly up-regulated in peripheral blood mononuclear cells (PBMCs), and that upon stimulation with a double-stranded RNA analog, PBMCs from HCV patients displayed a much more pronounced induction of the Interferon (IFN) pathway. In order to understand the underlying mechanisms of this IFN signature, we used direct analysis of IFN signaling by in vitro stimulation to identify key members of the IFN pathway. We showed that both the type I and type III IFN families stimulate a large set of antiviral genes, and that many of these genes were also found to be stimulated during chronic HCV infection. Finally, we propose two new computational methods for the analysis of gene expression data, which we use to characterize the activation of biological pathways during infection, and to identify the cell-specific effects of infection with HCV. These results further our understanding of the effects of chronic HCV infection, and help to define the role of IFN signaling in the body's response to chronic infection.
机译:了解人体对感染的反应是疾病研究的重要组成部分。通常使用基因表达微阵列研究个体组织中病毒感染的反应,并且已证明血液是研究许多感染时特别有用的组织。在本文中,我们使用了许多微阵列数据集的计算分析来了解慢性丙型肝炎病毒(HCV)感染对感染患者血液的整体影响,并讨论了为分析这些数据而开发的新计算技术。我们发现,在慢性感染HCV的过程中,与先天免疫应答相关的途径在外周血单个核细胞(PBMC)中明显上调,并且在用双链RNA类似物刺激后,HCV患者的PBMC表现出很大的变化。更明显的干扰素(IFN)途径诱导。为了了解这种IFN信号的潜在机制,我们使用了体外刺激对IFN信号的直接分析,以鉴定IFN途径的关键成员。我们表明,I型和III型IFN家族均刺激大量抗病毒基因,而且还发现许多这些基因在慢性HCV感染过程中受到刺激。最后,我们提出了两种新的计算方法来分析基因表达数据,这些方法可用来表征感染期间生物途径的激活,并鉴定感染HCV的细胞特异性作用。这些结果使我们进一步了解了慢性HCV感染的影响,并有助于确定IFN信号在机体对慢性感染的反应中的作用。

著录项

  • 作者

    Bolen, Christopher.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Health Sciences Pathology.;Biology Virology.;Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号