首页> 外文学位 >Synthesis, characterization, and ultrafast dynamics of metal, metal oxide, and semiconductor nanomaterials.
【24h】

Synthesis, characterization, and ultrafast dynamics of metal, metal oxide, and semiconductor nanomaterials.

机译:金属,金属氧化物和半导体纳米材料的合成,表征和超快动力学。

获取原文
获取原文并翻译 | 示例

摘要

The optical properties of each of the three main classes of inorganic nanomaterials, metals, metal oxides, and semiconductors differ greatly due to the intrinsically different nature of the materials. These optical properties are among the most fascinating and useful aspects of nanomaterials with applications spanning cancer treatment, sensors, lasers, and solar cells. One technique which is central to understanding the optical properties and subsequently allowing exploitation of them is femtosecond transient absorption (TA) which specifically aids in explicating the kinetics of photoexcited charge carriers. In this dissertation, their respective syntheses, optical ( e.g., steady-state) characterizations, and TA (e.g., time-resolved) dynamics were explored in order to obtain a fundamentally deeper understanding of their photophysical properties and to provide a deeper understanding of the nature of the underlying photophysics of each class of nanomaterial. For hollow gold nanospheres (HGNs), their ability to absorb high-peak-power femtosecond laser pulses was investigated and was found to be dependent upon average power of the laser. Additionally, gold nanostars (AuNS) were found to exhibit coherent vibrational oscillations arising from phonon relaxation following hot electron relaxation of ∼2 ps, dependent upon peak power. Metal oxides likewise were explored with TA techniques in order to probe their excited state kinetics. Specifically, TA was used to study the ultrafast charge carrier dynamics of hydrogen-treated TiO2 nanowires which contains a singly-occupied oxygen vacancy within the bandgap unlike pristine TiO2. Following UV irradiation, the charge carrier recombination of the hydrogen-treated TiO2 NWs was slower than that of pristine TiO2. These ultrafast results indicate that the presence of the oxygen vacancy significantly slows the charge carrier recombination within the hydrogen-treated TiO2 relative to pristine TiO2. The combination of metal oxides and metal, in the form of Fe3O 4-Au core-shell NPs, combined the modalities of magnetism from the metal oxide and surface plasmon resonance from the metal. This was done to explore the surface enhanced Raman scattering (SERS) properties of the resultant core-shell nanomaterial, in which magnetically-induced aggregation of the NPs was observed to enhance greatly their SERS response by a factor of 7x via the generation of more "hot spot" sites as well as improved scattering from the aggregates overall. Finally, TA was utilized to study the exciton dynamics and relaxation pathways of porous silicon nanowires, for which a power-dependence was found and the initial recombination increased in amplitude and decreased in time for increasing laser power, due to exciton-exciton annihilation. Similar results were found for PbS and PbS/CdS core/shell quantum dots. Knowledge of the charge carrier relaxation dynamics in these semiconductor materials may lead to an improved understanding of the origin of the photoluminescence (PL) and how to optimize better and exploit more fully that property for future applications.
机译:无机纳米材料,金属,金属氧化物和半导体这三类主要材料的光学性质由于材料的本质不同而有很大差异。这些光学性质是纳米材料最引人入胜和最有用的方面之一,其应用范围涵盖癌症治疗,传感器,激光和太阳能电池。飞秒瞬态吸收(TA)是理解光学特性并随后允许利用它们的关键技术,它特别有助于阐明光激发电荷载流子的动力学。在本文中,研究了它们各自的合成,光学(例如稳态)表征和TA(例如时间分辨)动力学,以便从根本上更深刻地了解其光物理性质,并提供对它们的更深入的了解。每类纳米材料的基本光物理性质。对于空心金纳米球(HGN),研究了它们吸收高峰值功率飞秒激光脉冲的能力,发现该能力取决于激光的平均功率。此外,还发现金纳米星(AuNS)表现出相干的振动振荡,这是由峰值电子在约2 ps的热电子弛豫后由于声子弛豫引起的。同样用TA技术研究金属氧化物,以探测其激发态动力学。具体而言,TA被用来研究氢处理的TiO2纳米线的超快电荷载流子动力学,该氢能处理的TiO2纳米线与原始TiO2不同,在带隙内包含一个单独的氧空位。紫外线照射后,氢处理的TiO2 NWs的载流子重组比原始的TiO2慢。这些超快的结果表明,相对于原始的TiO2,氧空位的存在显着减慢了经氢处理的TiO2中的电荷载流子复合。 Fe3O 4-Au核-壳NP形式的金属氧化物和金属的组合,结合了金属氧化物的磁化形式和金属的表面等离子体共振。这样做是为了探索所得核-壳纳米材料的表面增强拉曼散射(SERS)特性,其中观察到NPs的磁诱导聚集可通过产生更多的NP将其SERS响应大大提高7倍。热点”站点,以及从总体上改进的聚集体散射。最后,TA被用于研究多孔硅纳米线的激子动力学和弛豫路径,发现了功率依赖性,并且由于激子-激子an灭,初始复合的振幅增加,时间缩短,从而增加了激光功率。对于PbS和PbS / CdS核/壳量子点也发现了类似的结果。这些半导体材料中电荷载流子弛豫动力学的知识可能会导致人们对光致发光(PL)的起源以及如何更好地优化和更充分地利用该特性以供将来应用的了解。

著录项

  • 作者

    Wheeler, Damon A.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Chemistry Inorganic.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 550 p.
  • 总页数 550
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号