首页> 外文学位 >The Nature of Quantum Truth: Logic, Set Theory, & Mathematics in the Context of Quantum Theory.
【24h】

The Nature of Quantum Truth: Logic, Set Theory, & Mathematics in the Context of Quantum Theory.

机译:量子真理的本质:量子理论背景下的逻辑,集合论和数学。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this dissertation is to construct a radically new type of mathematics whose underlying logic differs from the ordinary classical logic used in standard mathematics, and which we feel may be more natural for applications in quantum mechanics. Specifically, we begin by constructing a first order quantum logic, the development of which closely parallels that of ordinary (classical) first order logic --- the essential differences are in the nature of the logical axioms, which, in our construction, are motivated by quantum theory. After showing that the axiomatic first order logic we develop is sound and complete (with respect to a particular class of models), this logic is then used as a foundation on which to build (axiomatic) mathematical systems --- and we refer to the resulting new mathematics as "quantum mathematics." As noted above, the hope is that this form of mathematics is more natural than classical mathematics for the description of quantum systems, and will enable us to address some foundational aspects of quantum theory which are still troublesome --- e.g. the measurement problem --- as well as possibly even inform our thinking about quantum gravity. After constructing the underlying logic, we investigate properties of several mathematical systems --- e.g. axiom systems for abstract algebras, group theory, linear algebra, etc. --- in the presence of this quantum logic. In the process, we demonstrate that the resulting quantum mathematical systems have some strange, but very interesting features, which indicates a richness in the structure of mathematics that is classically inaccessible. Moreover, some of these features do indeed suggest possible applications to foundational questions in quantum theory. We continue our investigation of quantum mathematics by constructing an axiomatic quantum set theory, which we show satisfies certain desirable criteria. Ultimately, we hope that such a set theory will lead to a foundation for quantum mathematics in a sense which parallels the foundational role of classical set theory in classical mathematics. One immediate application of the quantum set theory we develop is to provide a foundation on which to construct quantum natural numbers, which are the quantum analog of the classical counting numbers. It turns out that in a special class of models, there exists a 1-1 correspondence between the quantum natural numbers and bounded observables in quantum theory whose eigenvalues are (ordinary) natural numbers. This 1-1 correspondence is remarkably satisfying, and not only gives us great confidence in our quantum set theory, but indicates the naturalness of such models for quantum theory itself. We go on to develop a Peano-like arithmetic for these new "numbers," as well as consider some of its consequences. Finally, we conclude by summarizing our results, and discussing directions for future work.
机译:本文的目的是构建一种全新的数学类型,其基础逻辑与标准数学中使用的普通古典逻辑有所不同,我们认为对于量子力学的应用可能更自然。具体来说,我们从构造一阶量子逻辑开始,其发展与普通(经典)一阶逻辑的发展非常相似-本质上的区别在于逻辑公理的性质,在我们的构造中,它们是有动机的通过量子理论。在证明我们开发的公理一阶逻辑是健全且完整的(针对特定类型的模型)之后,该逻辑随后被用作构建(公理)数学系统的基础-我们将其称为由此产生的新数学称为“量子数学”。如上所述,希望这种形式的数学比经典数学更自然地描述量子系统,并且将使我们能够解决仍然麻烦的量子理论的一些基础方面-例如测量问题-甚至可能会告诉我们有关量子引力的想法。构建基本逻辑后,我们研究了几个数学系统的属性-例如存在这种量子逻辑的抽象代数,群论,线性代数等的公理系统。在这个过程中,我们证明了所产生的量子数学系统具有一些奇怪但非常有趣的特征,这表明经典的数学结构无法实现。此外,这些特征中的某些确实确实暗示了对量子理论中基础问题的可能应用。我们通过构建公理的量子集理论来继续进行量子数学的研究,该理论表明它满足某些合乎需要的标准。最终,我们希望这样的集合论能够在某种意义上为量子数学奠定基础,这种意义与经典集合论在古典数学中的基础作用相似。我们开发的量子集理论的一个直接应用是为构建量子自然数提供基础,而量子自然数是经典计数数的量子模拟。事实证明,在一类特殊的模型中,特征值是(普通)自然数的量子理论中的量子自然数与有界可观察物之间存在1-1对应关系。 1-1的对应关系非常令人满意,不仅使我们对我们的量子集理论有很大的信心,而且表明了这种模型对于量子理论本身的自然性。我们继续为这些新的“数字”开发类似Peano的算法,并考虑其一些后果。最后,我们通过总结结果并讨论未来工作的方向来进行总结。

著录项

  • 作者

    Frey, Kimberly.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Physics Quantum.;Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 291 p.
  • 总页数 291
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号