首页> 外文学位 >Microdisk cavity integration with indium arsenide quantum dots: From as-grown to regrowth.
【24h】

Microdisk cavity integration with indium arsenide quantum dots: From as-grown to regrowth.

机译:带有砷化铟量子点的微盘腔集成:从生长到再生。

获取原文
获取原文并翻译 | 示例

摘要

The growth of self-assembled quantum dots growth is a strain-driven phenomenon, usually taking place in lattice-mismatched epitixial growth. Electrons and holes confined in these nanoscale man-made objects, give out atomic-like sharp optical transitions. This kind of emission can be used in quantum information processing if the optical extraction efficiency is high enough, which is possible by embedding QDs into a micro-scale optical cavity. This enhancement effect can be estimated as a Purcell effect, which is the largest when the cavity Q is as high as possible and the cavity volume is as small as possible. A microdisk cavity is one of the widely used microcavities in cavity-QED research. In this thesis, we discuss QD lasing in the smallest microdisk (1.8mum) reported. From the cavity mode lines tuning through QD exciton lines, it approaches single QD lasing, usually a Purcell factor of 80 is required to achieve this goal. When the QD is at resonance with a cavity mode, a lasing threshold as low as 10A/cm2, or 300nW for each disk is estimated. Another issue is also important for QD emission to achieve better coupling with the cavity mode, that is, spatial coupling. Therefore, we developed a regrowth technique to place QDs close to the anti-node of the microdisk whispering-gallery modes. Under our preferred growth condition with a long diffusion path for In adatom, the QDs will only appear at the disk edge. We notice an obvious size effect for this regrowth: on larger disk of 30∼m diameter, the QD linear density will saturate at 6/mum; while on smaller disks of 3∼4mum diameter, there are usually only 1∼3 QDs in the whole disk plane. Our micro-PL shows a standard single QD emission signature, as well as a large splitting for the neutral excitons, with opposite linear polarization. This regrowth technique can provide sharp exciton peaks as well as a cavity Q of 4,000 for the small disks of 3∼5 mum diameter.
机译:自组装量子点的生长是应变驱动的现象,通常发生在晶格不匹配的上皮生长中。局限在这些纳米级人造物体中的电子和空穴发出原子状的尖锐光学跃迁。如果光提取效率足够高,则可以在量子信息处理中使用这种发射,这可以通过将QD嵌入到微型光学腔中来实现。可以将这种增强效果估计为珀塞尔效应,当空腔Q尽可能高且空腔体积尽可能小时,该效应最大。微盘腔是腔QED研究中广泛使用的微腔之一。在本文中,我们讨论了在最小的微型磁盘(1.8μm)中报告的QD激光。从腔模线到QD激子线的调谐,它接近单个QD激射,通常需要80的珀塞尔因数才能实现此目标。当QD与腔模式共振时,估计每个磁盘的激光阈值低至10A / cm2或300nW。对于QD发射而言,要实现与腔模更好的耦合(即空间耦合)也很重要。因此,我们开发了一种再生技术来将QD放置在微盘耳语画廊模式的波腹附近。在我们首选的生长条件下,In原子的扩散路径较长,这些量子点将仅出现在椎间盘边缘。我们注意到这种再生长有明显的尺寸效应:在直径为30μm的较大圆盘上,QD线密度将以6 /μm饱和。而在直径为3到4微米的较小磁盘上,整个磁盘平面通常只有1-3个QD。我们的micro-PL表现出标准的单个QD发射特征,以及具有相反线性极化的中性激子的大分裂。这种再生技术可以为3至5微米直径的小圆盘提供尖锐的激子峰以及4,000的腔Q。

著录项

  • 作者

    Xie, Zhigang.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Optics.; Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号